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ABSTRACT 

Many daily activities require the temporary maintenance and manipulation of 

information in working memory. A hallmark of this system is its limited capacity—

research suggests that adults can actively maintain only about 3-4 items at once. A central 

question in working memory research is the source of such capacity limits. One approach 

to this question is to study the developmental origins of working memory capacity. 

Developmental working memory research has shown a general increase in capacity 

throughout childhood and into adulthood. There have been few investigations, however, 

into the mechanisms behind these developmental changes, and proposals that have been 

put forth do not specify the processes underlying changes in capacity. One particularly 

puzzling, and unexplained, finding is an apparent decrease in visual working memory 

capacity over development, from an adult-like capacity of 3-4 items at 10 months to 1.5 

items at 5 years. One probable source of this developmental discrepancy is that these two 

capacity estimates were derived from different tasks: preferential looking in infancy and 

change detection in later childhood. Although these tasks differ in many respects, existing 

theoretical explanations of the processes underlying performance in these tasks are 

underspecified, making it difficult to identify the origin of the apparent regression in 

capacity over development. 

To investigate the developmental discrepancy across tasks, I developed a unified 

model to capture how capacity limits arise in preferential looking and change detection. I 

used this model to generate three specific behavioral predictions: 1) in preferential 

looking, children and adults should show higher capacity estimates than infants; 2) 

capacity estimates should be higher in preferential looking than in change detection when 

tested in the same individuals; and 3) although capacity estimates differ, performance 

should be correlated across tasks because both rely on the same underlying working 

memory system. In addition, I proposed a fourth prediction regarding the unified model: 
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developmental changes in both tasks should be captured by a specific developmental 

mechanism, the Spatial Precision Hypothesis. Results from three experiments and model 

simulations confirmed all four predictions, providing strong support for a new Dynamic 

Field Theory of visual working memory. 
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ABSTRACT 

Many daily activities require the temporary maintenance and manipulation of 

information in working memory. A hallmark of this system is its limited capacity—

research suggests that adults can actively maintain only about 3-4 items at once. A central 

question in working memory research is the source of such capacity limits. One approach 

to this question is to study the developmental origins of working memory capacity. 

Developmental working memory research has shown a general increase in capacity 

throughout childhood and into adulthood. There have been few investigations, however, 

into the mechanisms behind these developmental changes, and proposals that have been 

put forth do not specify the processes underlying changes in capacity. One particularly 

puzzling, and unexplained, finding is an apparent decrease in visual working memory 

capacity over development, from an adult-like capacity of 3-4 items at 10 months to 1.5 

items at 5 years. One probable source of this developmental discrepancy is that these two 

capacity estimates were derived from different tasks: preferential looking in infancy and 

change detection in later childhood. Although these tasks differ in many respects, existing 

theoretical explanations of the processes underlying performance in these tasks are 

underspecified, making it difficult to identify the origin of the apparent regression in 

capacity over development. 

To investigate the developmental discrepancy across tasks, I developed a unified 

model to capture how capacity limits arise in preferential looking and change detection. I 

used this model to generate three specific behavioral predictions: 1) in preferential 

looking, children and adults should show higher capacity estimates than infants; 2) 

capacity estimates should be higher in preferential looking than in change detection when 

tested in the same individuals; and 3) although capacity estimates differ, performance 

should be correlated across tasks because both rely on the same underlying working 

memory system. In addition, I proposed a fourth prediction regarding the unified model: 
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developmental changes in both tasks should be captured by a specific developmental 

mechanism, the Spatial Precision Hypothesis. Results from three experiments and model 

simulations confirmed all four predictions, providing strong support for a new Dynamic 

Field Theory of visual working memory. 
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CHAPTER 1 

WORKING MEMORY CAPACITY 

In the effort to understand how human memory works, researchers and 

theoreticians within the psychological sciences have divided memory in a variety of 

ways, for example, sensory versus short-term versus long-term (e.g., Atkinson & Shiffrin, 

1968), episodic versus semantic (e.g., Tulving, 1972), declarative versus procedural (e.g., 

Squire, 1986), implicit versus explicit (e.g., Schacter, 1987). One particular sub-division 

of memory has been studied extensively since it was proposed by Baddeley and Hitch 

(1974) more than three decades ago: a three-component working memory system 

comprised of a verbal store (the articulatory loop), a visual store (the visuo-spatial 

sketchpad), and a central executive.1 In this model, the central executive selects and 

controls processes operating on the information being held in the verbal and visual stores. 

These “slave” systems serve to temporarily store and manipulate information, but each 

has a limited capacity. One common example of a task that depends on working memory 

is mentally adding a series of numbers—to arrive at the correct answer, one must hold 

intermediate values in mind before adding the next number. This type of process 

underlies many facets of everyday human behavior, from sentence processing to 

integration of a visual scene across saccades to planning sequences of actions to move 

through the world or reach for objects. The ability to store and manipulate information is 

vital for successful behavior. 

Although Baddeley and Hitch (1974) were the first to propose a conceptual model 

of working memory that posited separate stores for verbal and visual information, they 

were not the first to suggest that memory has a limited capacity. Miller (1956) proposed a 

                                                 
1 Since the original paper, a fourth component has been added by Baddeley (2000)—a 
multimodal episodic buffer that can store information in a multi-dimensional code. 
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“magical number seven, plus or minus two” as the specific limit for what was then 

termed “immediate” memory. Outside of the field of psychology, Miller’s proposal of a 

seven-item capacity has largely survived this past half-century; within the field, however, 

it took almost 20 years before other researchers challenged this conclusion (see Cowan, 

Morey, & Chen, in press, for review) . The first challenge came from research by 

Baddeley and colleagues (Baddeley, Thomson, & Buchanan, 1975) showing that the 

capacity of verbal working memory depended on the details of the items being 

remembered, for example, that capacity tends to be lower for long words than for short 

words. In the same year, a chapter by Broadbent (1975) refined the idea of capacity by 

proposing that near-ceiling performance should be expected for list-lengths within one’s 

capacity, as opposed to the 50% correct threshold previously used. With this 

modification, the capacity of verbal working memory seemed to be only three to four 

items. Broadbent noted, however, that there are cases in which people can remember 

more than four items reliably, but only when the items being stored have been learned as 

units or “chunks” (see also Broadbent, 1971). 

Although the field has debated the details of capacity over the years, there is little 

disagreement that working memory has a limited capacity or that working memory 

should be divided into separate verbal and visuo-spatial systems (see Cowan, 2001, and 

commentaries for in depth discussion; see also Miyake & Shah, 1999). A central question 

in working memory research is the source of such capacity limits. One approach to 

answering this question is to study the developmental origins of working memory 

capacity. The first step is to map out developmental changes in working memory tasks, 

finding the age at which children first show working memory abilities, how these abilities 

change throughout childhood, and when children finally reach adult-like levels of 

performance. Mapping these changes has been the focus of most research on the 

development of working memory capacity. The next step should be to look for the causes 

behind these developmental changes; however, only a few researchers have made this 
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question a focus of their work (but see Case, 1995). In the sections that follow, I review 

research in verbal and visuo-spatial working memory, focusing specifically on proposals 

regarding the nature and developmental origins of capacity limits.  Then, I describe 

recent changes in the study of visual working memory that have revealed a discrepancy in 

capacity estimates over development, as well as the limitations of our theoretical 

understanding of how different tasks assess capacity. The goal of this project is to use a 

computational modeling approach to explore the mechanisms underlying the 

development of visual working memory capacity, thereby bridging a critical empirical 

and theoretical gap in the literature between infancy and early childhood. 

Before describing research on capacity and working memory, however, it is 

important to note that there has been much debate regarding how to define working 

memory and which laboratory tasks test working memory versus, for instance, short-term 

memory. Those researchers that espouse the short-term memory view assert that a task 

must involve manipulation of information, not just storage, in order to qualify as a 

working memory task. From this perspective, a secondary task must be used—for 

example, solving equations between each word in a list-memory task (e.g., Anderson, 

Redere, & Lebiere, 1996). Others take a broader view of working memory, suggesting 

that information held in memory must simply be used in service of a specific task (e.g., 

reciting an ordered list). Within this perspective, researchers often choose to measure the 

“span” of working memory.  

In this thesis, I will adopt a third alternative that focuses on the active 

maintenance of information once input has been removed. A central component of this 

view of working memory is that using information in service of other cognitive 

operations requires stability. That is, the cortical system actively maintaining the required 

information must keep that neural representation stable to support operations on this 

information conducted by, for instance, some other cortical system. This requires stability 

in the face of neural noise, stability in the face of potentially “distracting” inputs, and so 
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on (see Chapter 2 for further discussion, see also Spencer, Perone, & Johnson, in press). 

Given that this view differs from the common definitions of working memory in the 

literature, I will review results from the various perspectives above; note, however, that 

“working memory” performance varies considerably between tasks with different 

demands. This variation across studies highlights the need for specificity regardless of the 

particular view of working memory that is adopted. One way to achieve such specificity 

is to organize concepts using formal models (see Miyake & Shah, 1999, for steps in this 

direction). Formal models require theorists to be explicit about the mechanisms they 

propose to underlie performance, and the assumptions for how these mechanisms interact 

in service of performance. As such, they serve as a test of the internal consistency of the 

theory, as well as allowing direct examination of how changes in these mechanisms may 

affect performance (see Mareschal & Thomas, 2007, for discussion).  

As I will show below, moving to the level of a formal theory of the processes that 

underlie working memory can clarify empirical discrepancies in estimates of capacity 

across tasks in the literature. Formal theory can also reveal critical conceptual gaps in 

common terms such as “capacity” and can shed new light on the mechanisms that give 

rise to changes in working memory abilities over development. This is accomplished by 

reuniting cognition and behavior across multiple timescales, explicitly linking real-time 

memory processes with the behavior produced in working memory tasks and tying 

changes in these processes to mechanisms of learning and development. It is useful in 

this context to note that the formal theory adopted in this thesis derives from dynamic 

systems theory, which emphasizes the context-specific nature of behavior. This approach 

is particularly well-suited to the question of how working memory capacity changes over 

development because capacity has been estimated in the literature using different tasks at 

different ages. From this perspective, it is important to move away from thinking about 

capacity has an underlying competence tapped in specific paradigms. Rather, capacity is 
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intricately tied to the second-to-second processes that give rise to working memory 

representations, and how such representations are probed in the task setting. 

Verbal Working Memory 

In much of the early research following Baddeley and Hitch’s (1974) proposed 

working memory system, the focus was on the capacity of the verbal component of 

working memory in adults (Baddeley, 1981). Verbal working memory tasks are typically 

tests of memory span—a series of words are presented to the participant, who must then 

recite the words back, in the same order, to the experimenter. The number of words in the 

span increases one at a time until the participant can no longer repeat them correctly, and 

the longest span that was reliably recalled2 is taken as the capacity of verbal working 

memory (e.g., Dempster, 1981). In his review, Dempster (1981) reports adults’ span as 

approximately 6 items, averaged across digit, word, and letter span tasks from a number 

of studies; he also cites individual differences ranging from 4 to 10 items in these tasks. 

Although span tasks are one of the most common approaches to studying the 

capacity of verbal working memory, they are not without limitations. First, the capacity 

of verbal working memory depends on the details of the items being remembered: 

capacity tends to be lower for long words than for short words (e.g., Baddeley et al., 

1975). One particularly striking demonstration of this point was provided by Ellis & 

Hennelley (1980) who found that bilingual participants would show higher capacity 

estimates when tested with English digits (about 6.5 items) versus Welsh digits (about 

5.75 items), since Welsh number-words are longer than English number-words. 

                                                 
2 Note that different researchers adopt different criteria for what constitutes reliable recall; as 
mentioned above, some require participants to be correct on only 50% of trials, whereas others 
determine span from the proportion of items recalled from long (e.g., “supraspan”) lists. See 
Dempster (1981) for discussion. 
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A second difficulty in the assessment of the capacity of verbal working memory is 

that people may group or “chunk”3 items in memory to increase their retrieval (see 

Dempster, 1981, for review). For example, in a digit span task, participants may group 3, 

4, or 5 digits together, as they commonly do when remembering a phone number or ZIP 

code. Once digits are grouped in this way, the groups become the units of memory; what 

was previously a list of 10 digits may be remembered as 3 groups, thus making capacity 

appear larger than if the items were not chunked in memory. In an empirical test of this 

hypothesis, Ryan (1969) presented adults with sequences of 9 digits—beyond the typical 

adult capacity—but grouped these items into sets of 3 (resulting in 3 groups) during 

presentation in some conditions. Adults in the grouping conditions performed up to 23% 

better than adults in the ungrouped control condition (although different grouping 

techniques led to different levels of improvement). Thus, grouping the items during 

presentation did indeed help adults recall more items at test. 

These details of performance provide important caveats for interpreting measures 

of the capacity of verbal working memory—the particulars of the task and participant 

strategies may alter the number of items that appear to be held in working memory. 

Nevertheless, verbal working memory capacity still seems to measure some valid 

psychological construct, as it often correlates positively with other measures of verbal 

intelligence or performance. For example, Daneman & Carpenter (1980) showed that 

word span and reading span both correlated with reading comprehension measures, 

including performance on the verbal section of the Scholastic Aptitude Test (see, e.g., 

Cowan et al., 2005, for similar correlations over development). 

                                                 
3 Dempster (1981) uses the term “chunking” to refer only to cases in which grouping results in a 
familiar sequence, such as chunking the letters F-B-I. 
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More recent work on verbal working memory has explored the developmental 

origin of capacity limits. A summary of research in this area is shown in Table 1. 

Research has demonstrated that children tend to have lower verbal working memory 

capacity (in span tasks) than adults, and that capacity increases from about 2.5 items at 2 

years to about 5.25 items at 12 years of age (Dempster, 1981). Note, however, that 

estimates vary by task; for example, these averages reported by Dempster were derived 

from digit span, word span, and reading span tasks. Using only a digit span task, Isaacs 

and Vargha-Khadem (1989) reported spans of 5.2 at 7 years to 6.7 at 15 years. In 

addition, developmental change through this period is not necessarily linear; the rate at 

which span increases is relatively rapid in early childhood and slows after the age of 7 

years (see, e.g., Dempster, 1981, for review). Interestingly, limited capacity might have 

adaptive consequences early in development (see Chapter 5 for further discussion). For 

instance, in language development, the “less-is-more” hypothesis (e.g., Newport, 1990) 

suggests that children’s limited memory of variable input actually helps them learn a 

regularized grammar.  

As with studies on adults’ verbal working memory capacity, developmental 

findings are not entirely straight-forward. The same caveats from adult research apply to 

children: the length of words affect span, and children may adopt strategies to increase 

how many words they remember at once. Indeed, some researchers suggest that it is the 

development of such strategies that drives developmental changes in verbal working 

memory capacity (see Dempster, 1981, for review). Research suggests that children 

younger than 7 years of age do not spontaneously rehearse items being held in working 

memory, as evidenced by similar findings in conditions with and without verbal load. 

Once children employ rehearsal in memory, there are still important developmental 

changes to achieve adult-like performance. First, when children do begin rehearsing 

items in memory, their speed of rehearsal is not as fast as adults’. As a result, more time 

passes between the rehearsal of an individual item, and items are more likely to decay in 
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memory. Second, after children begin rehearsing somewhat automatically, they are still 

not likely to spontaneously group items in memory to increase span (for review, see 

Dempster, 1981). 

These types of differences between children’s and adults’ verbal working memory 

performance led Dempster (1981) to summarize 10 factors that have been proposed to 

contribute to developmental and individual differences in performance.4 He classified 

these factors as comprising two categories: four were strategic variables, and six were 

non-strategic variables. Although many researchers propose that strategic variables (e.g., 

rehearsal, chunking) are a primary source of developmental improvement in working 

memory tasks, there is little direct evidence regarding how or why strategies might 

change over development. For non-strategic variables (e.g., speed of processing, 

resistance to interference), on the other hand, theorists have put forth some mechanisms 

that may produce developmental change. In particular, Pasual-Leone (1970) and Case 

(1995) propose that mental resources, referred to as M-space or M-power, are changing 

over development. Some researchers suggest that M-space is increasing over 

development, whereas others believe that the efficiency with which M-space is used is 

the source of developmental improvement. In either case, the primary mechanism 

proposed to cause this developmental change is an increase in myelination. According to 

Case (1995), this is a likely source because myelination not only increases the speed of 

neural conductivity, but also reduces interference through electrical insulation. Although 

it seems intuitive that these changes would produce either an increase in resources 

available or improve the efficiency of the use of these resources, no specific process has 

                                                 
4 Interestingly, Dempster (1981) concludes that only one of these ten proposed mechanisms—the 
speed and accuracy of item identification—has shown strong empirical support as a factor in 
developmental changes in span tasks. 
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been proposed by which increased neural conductivity would improve performance in 

span tasks. 

To summarize, research on verbal working memory has shown an increase in 

capacity over development, with dramatic increases in early childhood that slow down 

after about 7 years of age. For children and adults, a number of factors other than 

capacity may affect performance, including details of the stimuli as well as encoding or 

rehearsal strategies. Changes in these types of strategies are one proposal to account for 

developmental improvement, although no specific mechanism has been offered to 

account for why children first adopt and then improve in their strategy use. In addition, 

other theorists have suggested a more “maturational” explanation—that myelination 

improves the speed and efficiency with which children can perform these tasks. In these 

cases, however, the specific process by which myelination leads to changes in 

performance is still undefined.  

Visuo-Spatial Working Memory 

Researchers have recently begun to explore the capacity of the visuo-spatial sub-

system of Baddeley & Hitch’s (1974) working memory model, with more of a focus on 

developmental change. A summary of results from studies of visuo-spatial working 

memory is presented in Table 1. Early tests of this system took two general forms. First, 

researchers used visual tasks with items that were very likely to be verbally recoded and 

rehearsed—like digits, letters, or easily-named objects—and required verbal report (e.g., 

Hitch, Halliday, Schaafstal, & Schraagen, 1988; Hitch, Woodin, & Baker, 1989). Second, 

researchers used spatial tasks that presented a sequence of locations, as in the Corsi block 

task (Corsi, 1972; Milner, 1971) in which participants must reproduce a series of spatial 

locations. Note that both of these approaches utilize span measures,  in which items must 

be recalled in the correct sequence. 
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Not surprisingly, performance in the first type of task correlated highly with 

verbal working memory measures (Hitch et al., 1989). When children were tested in these 

tasks, however, an interesting developmental change was uncovered: young children 

(typically younger than 7 years) did not spontaneously recode the stimuli verbally. This 

was determined by including a verbal load in the task (e.g., repeating a nonsense phrase 

like “blah blah blah” throughout the duration of each trial), which did not disrupt 

performance in young children, but did impair older children’s performance (Hitch et al., 

1989). This developmental change corresponds to the age at which children begin to 

show spontaneous rehearsal in verbal tasks (as described above), so perhaps these 

findings reflect the same phenomenon—even if children did recode items verbally, if 

they do not rehearse, they would gain no benefit from recoding.  

In the Corsi block task (Corsi, 1972; Milner, 1971), the experimenter and 

participant sit facing each other with a display of 9 asymmetrically arranged blocks on a 

table between them. The experimenter taps a sequence of blocks in the display, and the 

participant then taps the same blocks in the same order. Testing begins with a single 

block (span length 1), then increases in span length over trials until the participant’s 

performance falls below a pre-determined threshold (e.g., correct performance on two out 

of three trials at a given span, Logie & Pearson, 1997). In this task, children show an 

increase in span over development from about 2.5 blocks at 5 years of age (Logie & 

Pearson, 1997) to about 5.6 blocks at 15 years of age (Isaacs & Vargha-Khadem, 19895); 

note that estimates were higher in a recognition version of the task, (Logie & Pearson, 

1997; see Pickering, 2001, for review). Adults show spans of about 6 blocks in the 

standard task (Della Sala, Gray, Baddeley, Allamano, & Wilson, 1999). 

                                                 
5 The children in this study were tested in both digit span and the Corsi block task; at every span 
length, children recalled more digits than blocks when recalling items in the order they were 
presented. Interestingly, when required to recall items backward, children recalled more blocks 
than digits. 
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The Corsi block task requires remembering which of the blocks has been tapped 

(location memory) as well as the order (sequence memory), and may also depend on 

motor memory—on each trial, when the participant responds, he or she is executing a 

specific motor pattern that may form the foundation of future responses. This raises the 

question of whether memory depends on actions, locations, or both and, correspondingly, 

what cognitive systems this task measures. For instance, Logie (1995) has argued that the 

visuo-spatial sketchpad should be further divided into the inner scribe and the visual 

cache. According to Logie, the inner scribe represents spatial and movement information, 

as is required in the Corsi block task. The visual cache, on the other hand, stores 

information about the visual form and color of objects. This suggests that there may be a 

component of visuo-spatial memory that is not measured in the Corsi block task.   

To try to avoid the problems of verbal recoding and sequencing or motor memory, 

a third type of task—the visual patterns task—was developed to measure visual working 

memory (Della Sala, Gray, Baddeley, & Wilson, 1997; Wilson, Scott, & Power, 1987). In 

this task, participants view a grid of blocks, half of which are unfilled and half of which 

are filled with a single color (e.g., all black, all red). The grid is briefly presented to 

participants, then removed for a short delay, and finally a blank grid is presented. For the 

standard recall response, participants must indicate which of the blocks in the grid were 

previously filled. Some studies have used a partial recall or recognition responses. In the 

partial recall version of the task (called recognition by Logie & Pearson, 1997), the grid 

is presented with one of the blocks changed (either from filled to unfilled or unfilled to 

filled), and the participant must indicate which of the blocks changed. For both response 

types, memory capacity is determined by the largest number of filled blocks (i.e., half the 

grid size) on which the participant could perform reliably—as in verbal working memory 

research, each researcher determines what constitutes reliable. The capacity of visuo-

spatial working memory has been estimated at approximately 2.5 blocks at 5 years of age, 

increasing to about 8 blocks at 12 years of age (again, estimates were higher in a 
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recognition version of the task; Logie & Pearson, 1997). Adults show a capacity of about 

9 blocks in the standard recall task (Della Sala et al., 1999). 

The visual patterns task was developed to differ from previous tasks in three 

important ways: the stimuli are not easily verbally recoded; performance does not depend 

on sequential ordering; and the stimuli and response are not strictly spatial. Although the 

first two of these goals were accomplished, the third is more uncertain. This task does 

successfully remove the spatial movement component of the Corsi task; however, the task 

may still be considered a spatial task because it depends on memory for locations—where 

the filled blocks were in the grid. However, some evidence suggests that the Corsi block 

and visual patterns tasks depend on at least partially separable memory systems. 

Specifically, Logie and Pearson (1997) showed that the two tasks showed different 

developmental trajectories, with better performance and earlier proficiency in the visual 

patterns task, especially if a recognition response was required rather than recall. 

Moreover, patients with visual or spatial deficits showed specific impairments on the task 

that corresponds to their deficit (Della Sala et al., 1999). Finally, Della Sala et al. (1999) 

showed selective impairment of performance on the Corsi block task from a spatial 

interference task, and impairment of performance on the visual pattern tasks from a visual 

interference task. 

Although the Corsi block and visual patterns tasks show some dissociation, both 

depend on spatial components of memory, suggesting they are better suited to test the 

inner scribe rather than the visual cache proposed by Logie (1995). One additional task 

has been developed to test memory for object features (i.e., the visual cache) rather than 

spatial positions (i.e., the inner scribe). Vicari and colleagues (Vicari, Bellucci, & 

Carlesimo, 2003) compared the Corsi block task with recognition of complex objects. In 

the visual recognition task, a complex object was presented for 2 s on a computer screen, 

then after a short delay nine similar objects were presented at the bottom of the screen 

and the participant indicated which of the objects matched the target object. As with other 
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visuo-spatial task, the number of items to be remembered was increased across trials to 

arrive at a capacity estimate. In both the Corsi block and object recognition tasks, the 

authors used the number of items in the last correct trial as the measure of span or 

capacity. 

These authors found that performance on the Corsi block task was more advanced 

over development, with higher span and faster improvement with age. In addition, they 

showed that a population with known spatial deficits (Williams syndrome) was deficient 

in the Corsi block task but not the visual recognition task, relative to mental-age matched 

controls. Together these experiments support the separable contributions of visual and 

spatial components within visuo-spatial working memory, as suggested by the distinction 

of the visual cache and inner scribe by Logie (1995). Interestingly, however, results from 

Vicari and colleagues (2003) and Logie and Pearson (1997) show opposite patterns of 

change over development in spatial versus visual tasks: Vicari et al. found the Corsi 

block task to be easier and improve more quickly over development than performance in 

the object recognition task, whereas Logie and Pearson found the Corsi block task to be 

more difficult and improve more slowly than performance in the visual patterns task. This 

difference across tasks is likely due to differences in the tasks chosen to measure the non-

spatial component of visual working memory: the object recognition task may be more 

difficult than the visual patterns task, and the two tasks may diverge over development 

due to the spatial nature of the pattern task. 

Pickering (2001) summarized the general developmental findings in visuo-spatial 

working memory and reviewed proposed developmental mechanisms. After ruling out 

contributions from verbal recoding, she identified four potential causes for developmental 

change: knowledge (with specific regard for familiar chunks that could be formed), 

processing strategies, processing speed, and attentional capacity. As in the verbal domain, 

no specific proposals have been put forth for how and why the use of specific strategies, 

including chunking, might develop. Both processing speed and attentional capacity, on 
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the other hand, are suggested to be linked to neurological maturation. Again, however, no 

specific processes for how maturation would affect either factor—and then how these 

factors would improve capacity—have been proposed. 

A New Approach to the Study of Visual Working Memory 

The previous sections highlighted some limitations in our understanding of the 

nature and developmental origins of capacity limits. In verbal working memory research, 

one challenge is the dependence of performance on the details of the stimuli—results 

seem to depend more on speed of rehearsal or processing than on storage, especially early 

in development when children do not spontaneously rehearse. In addition, verbal span 

tasks depend on sequencing, which may be a separable component of working memory. 

In studies of visuo-spatial working memory, early tasks relied heavily on the verbal 

system, showing the same developmental transition when children begin spontaneously 

rehearsing. Tasks that were developed to be strictly spatial, like the Corsi block task, also 

rely on sequencing as the primary measure of span. One task that avoids the sequential 

nature of the verbal and spatial tasks is the visual patterns task. Although performance on 

this task seems to be at least partially separable from the Corsi block task, both involve 

the use of spatial locations and, therefore, depend critically on developmental changes in 

children’s ability to remember locations in a spatial frame of reference. Thus, nearly all 

previous research on working memory capacity depends on rehearsal (including 

strategies like chunking), sequencing, or spatial cognitive abilities. 

Recently, however, researchers studying visual working memory (VWM) have 

adopted a new technique that minimizes the influence of these factors. Beginning with 

Luck & Vogel’s (1997) seminal paper, change detection has been the method of choice 

for testing memory capacity for individual visual features, as well as for multiple features 

bound into object representations (see Vogel et al., 2001, for discussion of how this task 

was developed). Figure 1 shows a standard change detection trial. First, a memory array 
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is shown briefly (100-500 ms) to the participant, followed by a short delay (250-1000 

ms). Then, a test array appears in which either all of the objects match the memory array, 

or the feature(s) of one object has changed to a new value. The participant reports 

whether there was a change in the display. This task avoids the influence of the three 

primary limitations of other visual tasks. First, the brief presentation of the items and 

short delay reduces the likelihood of verbal recoding and rehearsal (see Vogel, 

Woodman, & Luck, 2001). Second, the items are presented simultaneously for both 

encoding and testing, so memory for sequence is not a factor. Third, location is not a 

relevant dimension (i.e., it is not part of the response and does not change from the 

memory array to the test array), so the influence of spatial memory is minimized. Thus, 

the change detection task may provide a more direct test of the storage of non-spatial 

visual information than previous tasks. 

Findings across a host of studies have shown that adults have a capacity of 

approximately 3-4 simple items (e.g., colored squares or oriented bars) in change 

detection. As in research on verbal working memory, VWM research has shown that 

visual information can be grouped or chunked by combining multiple features of an item 

(e.g., color and shape) into a single integrated object. It is these integrated objects, rather 

than the individual features, that serve as the units of representation in VWM. 

Specifically, if adults must remember multi-featured objects (e.g., colored oriented bars), 

they show no significant decrement in their performance relative to when they must 

remember only colors or only line orientations (although this depends on the details of 

the task; see Johnson, Hollingworth, & Luck, 2008 for disucssion). While these findings 

have been replicated widely, they are not without controversy. For example, recent 

studies have shown that the details of the object features held in working memory can 

limit the capacity of this memory system, suggesting that working memory utilizes a pool 

of limited resources that can modify the number of “slots” available in a given task 
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(Alvarez & Cavanagh, 2004). I will return to this issue for further discussion in Chapters 

2 and 5. 

Although the exact nature of the cognitive representations that underlie VWM is 

under debate, researchers agree that VWM is a capacity-limited system. As in the verbal 

working memory literature, the next step for research in this area was to explore the 

developmental origins of these capacity limits. This required finding tasks that can be 

used across a broad range of ages. Some researchers adapted the adult procedure for use 

with children (the standard approach in the study of verbal working memory). This has 

proved challenging, particularly with young children because change detection generally 

requires adult subjects to complete dozens of trials to derive robust capacity estimates. 

Other researchers have designed a more child-appropriate method believed to measure 

the same construct. At present, however, it is unclear whether these new methods assess 

the same underlying cognitive processes tested in the adult change detection task. 

The standard change detection task has been used, with some modification, with 

children between the ages of 5 and 12 years of age (Cowan et al., 2005; Cowan, Naveh-

Benjamin, Kilb, & Saults, 2006; Riggs, McTaggart, Simpson, & Freeman, 2006). These 

studies have shown that, as in other developmental working memory studies, children 

tend to have lower capacity than adults (see Table 1). Moreover, capacity increases with 

over this period of development, reaching adult-like levels around 10 years of age. In 

particular, Cowan et al. (2005) estimated capacity as the smallest set size at which 

children responded correctly on at least 75% of trials. Using this method, they computed 

capacity estimates of approximately 3.5 items for 8-year-olds, improving up to around 

4.8 items for 12-year-olds. Cowan et al. (2006) also tested children (ages 8 to 12 years) in 

change detection, but did not compute capacity in these studies. These authors did report 

developmental improvements in children’s overall percent correct, which would 

correspond to a developmental increase in capacity. In a study including younger 

children, Riggs et al. (2006) used the Pashler (1988) formula to estimate VWM capacity 

 



www.manaraa.com

17 

of approximately 1.5 items for 5-year-olds, 2.9 items for 7-year-olds, and 3.8 items for 

10-year-olds.  Compared to the measures discussed in the previous sections, these 

capacity estimates are relatively low for these age groups (see Table 1). 

Other research on the development of VWM has used a different type of change 

detection task, known as a flicker or change blindness task (Shore, Burack, Miller, 

Joseph, & Enns, 2006).6 In this task, two photos or drawings of an object are presented 

side by side on two computer screens for 250 ms, followed by blank screens for either 50 

or 250 ms, then the re-presentation of the images for another 250 ms, and so on. As the 

images flick on and off, some detail of the image on one screen will change back and 

forth which each flicker. The participant is asked to indicate which of the two displays 

contains the changing image. Performance is measured as the proportion of trials on 

which the correct side is chosen, as well as the reaction time to make the correct choice. 

Results showed that both accuracy and reaction times improve between 6 and 10 years of 

age and into adulthood (Shore et al., 2006). Note that the capacity of VWM cannot be 

inferred from this task since each image only contains a single complex object; however, 

percent correct suggests a generally linear improvement between 6 and 10 years (for 

color changes, performance increased from about 95% to 98% for photos and from about 

86% to 97% for drawings during this period of development).  

A variant of this task has also been developed to test infants in a preferential 

looking paradigm; note that this is the first study to probe developmental changes in 

                                                 
6 One study has used a flicker paradigm to test capacity in adults (Rensink, 2000). This study 
tested memory for multiple items with either two simple shapes (rectangles oriented vertically or 
horizontally) or two colors (black and white). In this task, only one display was presented in 
which an item always changed, and capacity was estimated from search time to identify which 
item was changing. Capacity estimates were quite high, around 5.5 items for rectangles and at 
least 8 items for colors. These findings are somewhat controversial, though, because all of the 
items belonged to two highly distinct categories; this may have encouraged grouping by 
participants, which could inflate capacity estimates. 
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working memory capacity during this period of development, and therefore is the first 

study to be able to address the developmental origins of capacity in infancy.7 As in the 

flicker paradigm described above, images were presented on two side-by-side displays 

and blinked on and off over the course of the trial. To adapt this task to test the capacity 

of VWM, Ross-Sheehy, Oakes, & Luck (2003) presented arrays of colored squares, like 

those used in adult change detection tasks, on each display. A schematic of this task is 

shown in Figure 2; in one display (randomly determined across trials), one of the items in 

the array would change after each delay. The amount of time the infant spends looking at 

each display is tabulated across each 20-second trial. Preference scores are then 

calculated as the proportion of time on each trial that the infant spent looking at the 

changing display. 

The rationale behind this method is that if the number of the items in the display 

is within the infant’s VWM capacity, the infant will remember the items over the brief 

delay, will notice that the items are changing in one display, and will prefer to look at that 

display (given infants’ general bias to look at novelty in preferential looking task, Fagan, 

1970, 1973). If the number of items is beyond the infant’s capacity, however, the infant 

will not be able to detect the difference across sides and should show no preference. 

Using this method, Ross-Sheehy et al. (2003) found that 6-month-old infants only 

showed reliable change preferences for displays with a set size of 1 item. By the age of 

                                                 
7 Rose, Feldman, and Jankowski (2001) also developed a span type task to measure visual short-
term memory span (as they refer to it) in infants. Although the design of this task was adapted 
from span tasks used in traditional studies of verbal and visuo-spatial working memory, the 
adaptations required to make the task appropriate for infants make the results difficult to interpret. 
In particular, the stimuli were real, complex objects (and therefore may be remembered as 
multiple “items”; see discussion of Alvarez & Cavanagh, 2004, below) and were presented 
individually to infants for up to 10 s per object with inter-stimulus intervals of approximately 4 s 
each. Thus, by the time all of the items (up to four per trial) had been presented, nearly a minute 
may have elapsed since the first item was presented. As such, long-term memory likely played a 
significant role in performance, and the contributions of working memory cannot be clearly 
evaluated. 
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10 months, however, infants showed preferences when the set size (i.e., number of 

objects in the array) was as high as 4 items. These findings suggest that between the ages 

of 6 and 10 months, infants VWM capacity is rapidly increasing to adult-like levels.8 

Comparisons across these developmental studies raises a fundamental question: 

why is there a discrepancy in capacity estimates over development, with 10-month-olds 

showing a capacity of 4 items in preferential looking, and 5-year-olds showing a capacity 

of only 1.5 items in change detection? What developmental change could account for this 

pattern? Riggs et al. (2006) proposed that this divergence between tasks reflects a 

difference in what each task measures. Specifically, they contend that the preferential 

looking task measures something other than visual working memory capacity—possibly a 

more passive type of memory—or provides an index of working memory that does not 

effectively scale with capacity. This is similar to competence-performance arguments 

proposed in other areas of cognitive development, suggesting that looking tasks reveal 

the underlying “competence”, while other response types are more demanding and may 

limit performance (e.g., Baillargeon & Graber, 1988). Although this type of argument 

may be intuitively appealing, such arguments are essentially unfalsifiable (see Thelen & 

Smith, 1994, and Chapter 2 for further discussion). 

To understand why performance might differ across these two tasks, it is 

important to consider how they differ from one another, not only in the behavioral 

demands, but also in the structure of the task. First, these tasks require different 

behaviors, looking back and forth over 10 to 20 second trials versus generating an 

                                                 
8 Recent data suggests that the developmental transition from capacity of 1 to 3 items occurs 
between 6 and 7.5 months of age (Oakes, Messenger, Ross-Sheehy, & Luck, in press). Note, 
however, that only 10-month-old infants have been tested at set sizes of 4 items or higher. Older 
infants (13 months) have only been tested on set sizes of 1-3 items (Ross-Sheehy et al., 2003, 
Experiment 1), therefore it is unknown whether capacity remains the same or increases after 10 
months. 
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explicit decision after the presentation of the test array on each trial. In addition, they use 

different measures to infer capacity, above-chance change preference scores versus the 

pattern of decisions across dozens of trails. Moreover, the different behaviors and task 

structures call into question the relationship between VWM capacity and the behaviors 

being measured. Thus, it is important to consider both tasks in detail to understand why 

they produce paradoxical findings over development.  

Change Detection – Task Analysis 

A single trial in change detection requires a participant to (1) quickly encode the 

memory display, (2) maintain that information over a brief delay, (3) compare the items 

in memory to the items in the test array, and (4) decide whether the items match. 

Research suggests that adults encode items in an all-or-none fashion (e.g., Zhang & Luck, 

2008): if the number of items in the array exceeds capacity, some items are not encoded 

(rather than encoding partial information about all items). It is assumed that all items 

have an equal likelihood of being encoded, that is, if one has a capacity of 4 items and 5 

items are presented in the array, there is an 80% chance that any given item will be 

encoded. Assuming these items are maintained accurately over the delay, when the test 

array is presented, the 4 items that are being held in memory will be compared to the 

corresponding items in the array. Given that each item has the same likelihood of 

changing at test, there is a 20% chance on any given trial that the item that is not being 

held in memory will change. Therefore, performance is expected drop sharply when the 

array size surpasses capacity.  

Pashler (1988) developed a formula to translate a participant’s hit rate (H; the 

proportion of correct responses on change trials) into an estimate of capacity. This 

formula begins with the assumption that a participant will hold a discrete number of 

objects in memory (k) and that memory of those items remains accurate over brief delays. 

When these items are compared to the test array, the participant will respond “change” 
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only if the change occurred in one of the item being held in memory. If the array size (S) 

is higher than capacity, then there is a k / S likelihood of the change item being held in 

memory. In addition, a participant may correctly guess that there was a change (g) on a 

small number of trials in which the change was not actually detected (i.e., because the 

change item was not being held in memory). This guessing rate is inferred from “false 

alarm” trials—no change trials on which the participant incorrectly responded “change”. 

Because guesses would only occur on the trials in which the change item was not being 

held in memory (1 – [k / S]), the contribution of guesses is [1 – (k / S)] * g. Thus, the 

resulting formula is: 

(1.1) H = (k / S) + [1 – (k / S)] * g, 

where the first component captures “genuinely” correct trials, and the second component 

captures “lucky guesses”. To calculate capacity, then, the formula rearranges as: 

(1.2) k =S * (H – g) / (1 – g). 

This formula has been generally accepted as an appropriate estimate of capacity, although 

Cowan (2001) later updated the formula to also take into account correct performance on 

no change trials (although this formula only applies when one item is cued at test). 

In summary, each change detection trial requires the encoding items from the 

sample array, maintaining them over delay, comparing them to the test array, and then 

generating a decision based on this comparison (and, perhaps, some guessing strategy). 

Capacity is computed under the assumption that performance will be near ceiling for 

array sizes within a person’s capacity, and that performance will drop for larger arrays.  

Preferential Looking – Task Analysis 

Preferential looking differs from change detection in three important ways. First, 

although each array of items is presented only briefly (500 ms, similar to change 

detection), the arrays are presented repeatedly over the 20-second trial (i.e., for a total of 

26 presentations). Thus, rather than having a single opportunity to encode the items on 
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each trial, the infant is given repeated opportunities to encode the arrays. As a result, 

forming a memory representation of the array may be completed over multiple 

presentations. Moreover, repeated presentation of the items may allow support from long-

term memory to contribute to the formation of working memory representations (for 

discussion, see Perone, Spencer, & Schöner, 2007). 

Between the stimulus presentations are brief (250 ms) delays in which both 

displays are blank. The assumption is that infants maintain their memory for the array 

during this delay, similar to the maintenance of memory for the sample array in change 

detection. Evidence suggests that infants’ maintenance of information over this delay is 

an important component of capacity; specifically, if the “blank” delays are removed from 

the task (i.e., one display shows a static image of colored squares, while the second 

display has a different color change every 500 ms), then 6-month-old infants will show a 

preference for the changing display at set size 3 (Ross-Sheehy et al., 2003, Experiment 

4). Thus, removing the delay between the stimulus presentations allows young infants to 

detect changes at higher set sizes—note, however, that removing the memory delays is 

confounded with a difference in onsets across displays in this design. 

The second important difference between preferential looking and change 

detection is that the stimuli in the change detection task appear on a single display, 

whereas preferential looking includes arrays presented on two side-by-side displays. As a 

result, at all times in the preferential looking tasks, the infant is deciding which display to 

fixate, as well as whether to fixate a display at all; Ross-Sheehy et al. (2003) report 

average looking times of only 9-12 s per 20 s trial. Although looking time is often used to 

infer underlying cognitive processes, little is known about the real-time processes 

underlying infant looking behavior in these contexts, that is, the processes that drive 

looking from one fixation to the next  (for discussion, see Goldberg, 2008; Perone et al., 

2007).  
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This highlights the third important difference between the two tasks—it is not 

clear how to map looking behavior over the course of each 20 s trial to measures like 

percent correct (or percent hits). Indeed, inferring capacity from a looking time measure 

is quite complicated. The assumption is that infants’ preference scores—whether they 

look at the Change display longer than the No-Change display—is an indication of 

whether they were able to hold the items in a single display in memory. It has been 

argued, however, that this may not be a valid assumption (Riggs et al., 2006).  

To illustrate this point, note that infants typically fixate either display 

approximately 50% of the time in the preferential looking task (Ross-Sheehy et al., 

2003). This means that only about 12-14 stimulus presentations are fixated in the infant 

preferential looking task. Since stimuli are presented on both screens, however, there is 

an approximately 50% chance that the infant will be fixating the Change display during 

any particular fixation. This reduces the number of stimulus presentations that can drive a 

change preference to about 6 or 7. If an infant has a capacity of 1 item and is being tested 

in set size 2, there is a 50% chance of remembering the item that will change when 

fixating the Change display. Thus, infants might notice a change on about 3 stimulus 

presentations out of the 12-14 that are viewed. The question is whether this enough to 

drive a change preference. This question is further complicated by the fact that infants’ 

fixations of the displays are not necessarily synchronized with the stimulus 

presentations—they may look back and forth at any time within a presentation, or fixate a 

single display for multiple presentations. Thus, without analyzing infants’ performance 

on a fixation-by-fixation basis, we cannot know how many changes were actually viewed 

by each infant. This example highlights that the generalization from looking time to 

VWM capacity is not straight-forward. 
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Summary 

Research from a variety of tasks suggests that working memory—both verbal and 

visual—has a limited capacity. In addition, there are clear increases in capacity over 

development (see Table 1). Although results in verbal and visuo-spatial working memory 

may be affected by factors other than capacity, including strategies such as rehearsal and 

chunking, new studies in VWM have minimized these contributions and still show 

developmental changes. Across domains, however, there have been few attempts to 

understand the mechanism driving developmental changes in working memory capacity. 

Explanations have typically pointed to the development of strategy use or neural 

myelination, although neither type of explanation has been linked to a specific process to 

capture how these changes produce changes in capacity. 

In addition, a particularly puzzling developmental result has emerged in the 

VWM literature: there is a discrepancy between capacity estimates at 10 months (3-4 

items in preferential looking) and 5 years (1.5 items in change detection). A detailed 

analysis of the two tasks used with infants and young children suggests that these 

different capacity estimates may be driven by differences across tasks. Nevertheless, as is 

the case with the broader working memory literature, it is not clear what process actually 

leads to these task-specific differences in capacity estimates. To understand the 

relationship between these tasks and estimates of capacity over development, we need a 

theory that can address how estimates of capacity are linked to the behaviors in each of 

these tasks, and how this system might be changing over development. The goal of this 

project is to move toward such a unified theory. 

To this end, the next chapter reviews limitations of the current theoretical 

approaches to these tasks, and proposes that an alternative approach grounded in a 

dynamic neural field model can both explain previous findings using these tasks as well 

as generate novel predictions for how these tasks should be related within-subjects over 

development. I will describe how this type of model has previously captured performance 
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in the adult change detection and infant preferential looking tasks. Next, I will show 

model simulations demonstrating how a unified model can perform both tasks, yet 

produce different capacity estimates across the two tasks. From this model, I generate a 

set of three specific predictions which are tested empirically in Chapter 3; first, by 

adapting the change detection task for use with younger children (3-, 4-, and 5-year-olds), 

and, second, by testing the same participants in the infant preferential looking task. In 

Chapter 4, I test a fourth prediction—that the unified model can quantitatively capture 

these data and changes in capacity across tasks and over development using a previously 

proposed developmental hypothesis, the Spatial Precision Hypothesis (Schutte, Spencer, 

& Schöner, 2003; Simmering, Schutte, & Spencer, 2008; Spencer, Simmering, Schutte, & 

Schöner, 2007). Chapter 5 concludes by discussing these findings within the context of 

the broader literature on the development of working memory. 
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Figure 1. Events in a single change-detection trial. 
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Figure 2. Events in a single preferential looking trial.  
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Table 1 

Sample of Results from Developmental Studies of Working Memory Capacity 
      Age (years) 
  2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Verbal 
Cowan et al. (2005) 
 auditory       2.8  3.3  4.0 
 countinga       2.8  3.6  4.1 
 digitsa       4.7  4.9  5.4 
 ignored speech      2.0  2.0 
 listeninga       1.8  2.4  2.7 
 runninga       2.0  2.6  2.7 
Dempster (1981)b 
 average 2.6   3.9  4.5  4.9   5.3 
 digits  2.25   4.35  5  9   6.5 
 letters    3.5  4.5  4.9   5.3 
 words 3   4  4.2  4.3   4.5 
Isaacs & Vargha-Khadem (1989) 
 digits      5.2 5.7 5.8 6.1 6.1 5.8 6.2 6.3 6.7 

Visuo-spatial 
Hitch et al. (1989) 
 pictures    1.9      3.6 
Isaacs & Vargha-Khadem (1989) 
 blocks (Corsi)      4.1 4.7 4.7 5.3 5.3 5.4 5.4 5.4 5.6 
Logie & Pearson (1997) 
 blocks (Corsi), recall   2.8   4.5   5.2 
 blocks (pattern), recall   3.0   6.2   8.0  
 blocks (Corsi), recognition  3.7   7.1   8.0 
 blocks (pattern), recognition  4.0   10.9   14.8 
Vicari et al. (2003) 
 blocks (Corsi)    3.1 3.8 4.3 4.6 4.7 4.8 
 complex figures   2.4 2.7 2.8 3.0 3.3 3.4 
Wilson et al. (1987) 

 blocks (pattern), recognition 3.7  8.2    14.1  

Visual (change detection) 
Cowan et al. (2005) 
 colorsa       3.6  4.4  4.8 
Riggs et al. (2006) 
 colors    1.5  2.9  3.8 

Note. Results reported here were from standard versions of the tasks only; conditions designed to 
alter performance (e.g., interference added, additional manipulation required, extended delays) 
are not included. 

a These results are averaged across two experiments presented in the same paper. 

b These values are estimated from reviews of multiple other studies; see reference for details. 
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CHAPTER 2 

DYNAMIC FIELD THEORY AND 

 VISUAL WORKING MEMORY CAPACITY 

To date, the dominant theoretical perspective for understanding change detection 

and preferential looking has been Information Processing (IP). Although this perspective 

has yielded solid empirical progress over the past decade, there remain two specific 

limitations of the IP explanation of the processes underlying these tasks. First, this 

approach has yet to resolve whether VWM should be thought of as a discrete form of 

memory with fixed-resolution “slots” or as a flexible pool of resources in which memory 

representations vary according to the type of stimuli. Although a number of studies have 

been designed to address this debate (e.g., Alvarez & Cavanagh, 2004; Zhang & Luck, 

2008), neither perspective has fully explained the data that have been generated. 

Moreover, these two characterizations of VWM are only loosely tied to neural processes 

and have yet to be rigorously examined in this context. 

The second limitation of the IP approach to these tasks is its incomplete account 

of development. Indeed, some prominent developmental theorists contend that IP is not, 

in fact, a developmental theory (see Thelen & Bates, 2003). Three specific developmental 

changes have yet to be captured in the IP account of these tasks: the increase in capacity 

in preferential looking in the first year of life; the increase in capacity in change detection 

between the ages of 5 and 10 years; and the discrepancy between findings at 10 months in 

preferential looking and at 5 years in change detection. In addition to these limitations, 

even though change detection and preferential looking ostensibly measure the same 

cognitive system, there has been no explicit attempt in the literature to connect these 

tasks using a single, specific process-based account. 

This project seeks to overcome these limitations by unifying these tasks in a 

theoretical framework that has already shown promise for capturing the real-time details 
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of working memory over development—the Dynamic Field Theory (DFT, Spencer, 

Simmering, Schutte, & Schöner, 2007b; see also, Simmering, Schutte, & Spencer, 

2008b). As described in Chapter 1, I am adopting a definition of working memory that 

focuses on the active maintenance of information after input has been removed. This 

definition reflects my desire to ground working memory in known neural processes and 

puts particular emphasis on the real-time stability of working memory states, both of 

which are captured in the dynamic neural field model described in this chapter. First, I 

will review the general foundations of this model and how it has been applied to working 

memory. Next, I will describe the specific application of the model to the maintenance of 

non-spatial visual information in working memory in both the change detection and 

preferential looking tasks. Lastly, I will generate a set of specific predictions derived 

from a unified model that captures performance in both tasks. These predictions are then 

tested in experiments and simulations in subsequent chapters. 

Dynamic Field Theory  

The DFT is in a class of theoretical models that fall within the broader theoretical 

framework of dynamic systems theory. A primary emphasis of dynamic systems theory is 

that behavior is not rigidly pre-programmed; rather, behavior is emergent, “softly 

assembled” in the moment in response to the demands of the task, the details of the 

environment, and the history of the organism. The approach brings a new perspective to 

the question of the development of working memory because many previous theories 

attributed differences across tasks and ages to issues of competence versus performance 

(e.g., Baillargeon & Graber, 1988, regarding the development of the A-not-B error; see 

also Diamond, 1990a; Diamond, 1990b). Such arguments contend that children may have 

a particular competence early in development (i.e., the ability to remember where an 

object is hidden), but their performance only reflects this underlying competence in 

certain situations (i.e., in looking versus reaching tasks). Although these types of theories 
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have been popular in developmental psychology, they are essentially unfalsifiable 

because competencies are not directly testable—any failure in performance can be 

attributed to task demands that mask competence (for discussion, see Thelen & Smith, 

1994). 

Within dynamic systems theory, on the other hand, behavior is viewed as 

multiply-determined, encouraging researchers to explore the various contributions to 

behavior and to evaluate the robustness of behavior relative to the circumstances required 

to support them. Just as with competence-performance explanations, this perspective 

highlights the influence of task details, but also proposes specific processes and 

mechanisms by which such details should affect behavior. Consistent with this dynamic 

systems view, a primary focus of the DFT is to unite cognition and behavior by explicitly 

modeling the connection between underlying memory representations and the overt 

behavioral responses generated in specific memory tasks.  

The DFT arose from a class of models known as neural field models. Amari 

(1977) first proposed this class of models to capture the real-time dynamics of neural 

activation in visual cortex. This framework has been broadly applied, accounting for the 

processes that underlie saccadic eye movements (Kopecz & Schöner, 1995; Wilimzig, 

Schneider, & Schöner, 2006), motor planning (Erlhagen & Schöner, 2002; Schutte & 

Spencer, 2007), infants’ performance in Piaget’s A-not-B task (Thelen, Schöner, Scheier, 

& Smith, 2001), the dynamics of neural activation in motor and premotor cortex (Bastian, 

Riehle, Erlhagen, & Schöner, 1998; Bastian, Schöner, & Riehle, 2003), the behavior of 

autonomous robots (Bicho, Mallet, & Schöner, 2000; Iossifidis & Schöner, 2006; 

Steinhage & Schöner, 1998), and the development of spatial cognition (see Spencer et al., 

2007b, for review). 

Recently, the DFT has also been extended to working memory for non-spatial 

features (Johnson, Spencer, & Schöner, 2008b; Perone, Spencer, & Schöner, 2007). This 

extension of the DFT can address the first limitation of the IP approach to visual working 
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memory capacity, that is, the nature of working memory representations. In the DFT, 

specific values along metric dimensions are represented as sustained peaks or “bumps” of 

activation in neural fields (see Johnson, 2008, for discussion). Figure 3A shows a simple 

two-layer neural field model for illustration. In this model, the top layer consists of a 

single population of excitatory neurons, which are reciprocally coupled to the bottom 

layer of inhibitory neurons. Along the x-dimension in this figure is the continuous 

dimension (e.g., color) to which both layers of neurons are “tuned”. Specifically, neurons 

coding for similar values along this dimension in the excitatory layer engage in locally 

excitatory interactions (see solid curved arrow in Figure 3A), as well as projecting 

excitation to similarly-tuned neurons in the inhibitory layer. These inhibitory neurons, in 

turn, project broad lateral inhibition back to the excitatory layer (see dashed arrows in 

Figure 3A). Through this local excitation/lateral inhibition interaction profile, activation 

in the excitatory layer is able to form sustained peaks of activation. 

Patterns of activations within neural fields exhibit different attractor states, that is, 

stable states around which activation patterns cohere. For instance, in the absence of 

input, the activation level across the population remains at a stable baseline rate (i.e., the 

neurons’ negative resting potential), indicating that no relevant features are currently 

“represented”. However, when presented with input—for example, the appearance of an 

object with a particular color in the environment—activation increases for the neurons 

selectively tuned to this feature value. If input is sufficiently strong, the stable resting 

state is destabilized and the field moves into an “on” state, characterized by the formation 

of a localized, above-threshold peak of activation in the field. The location of this peak 

along the represented dimension (i.e., color) reflects the field’s estimation of the metric 

value present in the task space—that is, the detection of a particular color. Multiple peaks 

along the dimension would reflect the detection of multiple colors in the environment, 

with the level of activation of each peak providing an estimate of the relative certainty or 

salience of each informational source. 
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These peaks of activation have characteristics that can be specifically applied to 

capture different cognitive processes. In particular, peaks may exist in a self-stabilizing 

state, in which peaks remain active as long as the input is present; once input is removed, 

however, activation falls back to the resting state (see Figure 3B, dashed curve). This 

state can capture perceptual processes that detect items in the environment. Note that this 

state commonly emerges when local excitation is weak relative to lateral inhibition. If 

local excitation is strengthened, fields can move into a self-sustaining state, in which 

peaks of activation are maintained above-threshold (i.e., above zero) even after input has 

been removed (see Figure 3C, dashed curve). This self-sustaining state is the form of 

working memory that is central to the framework presented here. 

This form of working memory—self-sustaining peaks of activation within a 

neural field—accomplishes two key goals needed for a theory of VWM. First, peaks 

capture the notion of stability, which is necessary for memory representations to be used 

in service of behavior or other cognitive tasks. As discussed below, this type of stability 

plays an important role in the DFT account of development. Second, this approach 

provides neural grounding to the concept of working memory by illustrating how 

multiple items could be represented in layers of cortex. The application of neural fields to 

the representation of stimulus dimensions like color builds off of work by Georgopoulos 

and colleagues (Georgopoulos, Lurito, Petrides, Schwartz, & Massey, 1989) showing that 

one can construct neural fields based on functional topography. Specifically, neurons in 

many areas of cortex are not arranged topographically: two neurons next to one another 

in cortex might “prefer” very different values along the dimension to which they are 

tuned. Nevertheless, neural activation at the population level actually obeys topographic 

relations; that is, even though two neurons might be far apart on the cortical surface, they 

can still “prefer” similar stimulus values (e.g., similar colors) and therefore be mutually 

excitatory. By connecting neural field models to functional topography, direct 

connections can be made between model predictions and neurophysiological measures 
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(e.g., Bastian et al., 1998; Bastian et al., 2003; Erlhagen, Bastian, Jancke, Riehle, & 

Schöner, 1999; Jancke et al., 1999; Jancke, Erlhagen, Schöner, & Dinse, 2004). 

Change Detection in the Dynamic Field Theory 

As described above, the 2-layer model shown in Figure 3A can enter a type of 

perceptual state when a self-stabilizing peak forms; this type of architecture can also 

enter a working memory state when a self-sustaining peak forms. Taken separately, these 

states capture important components of the VWM tasks described above: detecting inputs 

in the environment and maintaining specific information over the course of brief delays. 

In order for a single model to perform a change detection task, however, these processes 

need to be integrated. This integration is achieved by combining two 2-layer models—

one tuned to act in a more perceptual state and one tuned to act in a working memory 

state—into a single three-layer model.  

This three-layer architecture, proposed by Johnson, Spencer, and Schöner (2008b) 

to capture change detection performance, is shown in Figure 4. The model consists of an 

excitatory perceptual field (PF(u); Figure 4A), a layer of inhibitory interneurons 

(Inhib(v); Figure 4B), and an excitatory visual working memory field (WM(v); Figure 

4C). In each field, the x-axis consists of a collection of neurons tuned to particular colors, 

and the y-axis shows each neuron’s activation level. These layers pass excitation and 

inhibition as indicated by green and red arrows, respectively, to capture the locally 

excitatory/laterally inhibitory interactions described above. In addition, to capture the 

change/no change decisions required in the change detection task, a response system is 

also shown that contains two self-excitatory, mutually-inhibitory nodes (Figure 4). One 

neuron receives summed excitatory activation from PF(u) to generate change responses, 

while the other receives summed activation from WM(w) to generate no change 

responses (see Simmering et al., 2008b; and Simmering & Spencer, 2008 for a similar 

process in position discrimination). Activation projects to these nodes when a decision is 
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required in the task (i.e., at a “go” signal during the presentation of the test display), and 

they are coupled in a “winner-take-all” fashion, such that only one node will sustain 

activation above-threshold, thereby generating a response. Thus, the model’s response is 

the result of competition between activation projected from the two excitatory layers, 

PF(u) and WM(w). 

Model equations. Activation in the perceptual field, PF(u), is captured by: 

++−= uhtxutxu ),(),(&τ ∫ ′′Λ′− xdtxuxxc uuuu )),(()(

′′ xdtx )),( noisetxS∫ Λ′−− vxxc uvuv ()( ++ ),(   (2.1) 

where  is the rate of change of the activation level for each neuron across the 

spatial dimension, x, as a function of time, t. The constant τ determines the time scale of 

the dynamics (Erlhagen & Schöner, 2002). The first factor that contributes to the rate of 

change of activation in PF(u) is the current activation in the field, -u(x,t), at each site x. 

This component is negative so that activation changes in the direction of the resting level 

hu.  

),( txu&

Next, activation in PF(u) is influenced by the local excitation / lateral inhibition 

interaction profile, defined by self-excitatory projections, 

, and inhibitory projections from Inhib(v), 

. These projections are defined by the convolution of a 

Gaussian kernel with a sigmoidal threshold function. In particular, the Gaussian kernel is 

specified by: 
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with strength, c, width, σ, and resting level, k. The sigmoidal function is given by:   
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where β is the slope of the sigmoid, that is, the degree to which neurons close to threshold 

(i.e., 0) contribute to the activation dynamics. Lower slope values permit graded 

activation near threshold to influence performance, while higher slope values ensure that 

only above-threshold activation contributes to the activation dynamics. At extreme slope 

values, the sigmoid function approaches a step function. For all simulations presented 

here, β = 0.5. 

Inputs to the model take the form of a Gaussian:  
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centered at xcenter, with width, σ, and strength, c. These inputs can be turned on and off 

through time (e.g., as items appear and then disappear). This time interval is specified by 

the pulse function χ(t). 

Lastly, activation within the field is influenced by the addition of a stochastic 

component consisting of spatially correlated noise: 

),'()(' txxxgdxqnoise noise ξ′−= ∫ . (2.5) 

Noise was added to the simulations by convolving a noise field composed of independent 

noise sources with a Gaussian kernel specified by: 
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where σnoise is the spatial spread of the noise kernel (set to 10 in all simulations). (For 

discussion of the differences between spatially correlated noise and Gaussian white noise, 

see Schutte, Spencer, & Schöner, 2003). 

The second layer of the model, Inhib(v), is specified by the following equation: 

++−= vhtxvtxv ),(),(&τ ∫ ′′Λ′− xdtxuxxc vuvu )),(()(

noisexdtxwvw +′′ )),((xxc vw Λ′−+ ∫ )( . (2.7) 
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As before, specifies the rate of change of activation across the population of 

feature-selective neurons, x, as a function of time, t; the constant τ sets the time scale 

(note that the time scale for inhibition is faster than for the excitatory layers, i.e., τv < τu); 

v(x, t) captures the current activation of the field; and hv sets the resting level of neurons 

in the field. Inhib(v) receives activation from two projections: one from PF(u), 

; and one from WM(w), 

.  

),( txv&

Λ′x vu ()

Λ′x vw)

∫ ′′− xdtxuxc vu )),((

∫ ′′− xdtxwxc vw )),(((

As described above, these projections are defined by the convolution of a Gaussian kernel 

(Equation 2.2) with a sigmoidal threshold function (Equation 2.3). Finally, this field also 

receives spatially-correlated noise, as described above. This noise is independent from 

the noise sources in the other layers of the model. 

The third layer of the model, WM(w), is governed by the following equation:  

++−= whtxwtxw ),(),(&τ ∫ ′′Λ′− xdtxwxxc wwww )),(()(

′xd∫− c ′Λ′− txvxx wvwv )),(()( ∫ ′xd))′Λ′−+ txuxxc wuwu ,(()(

noisetxSc s ++ ),( . (2.8) 

Again,  is the rate of change of activation across the population of spatially-tune 

neurons, x, as a function of time, t; the constant τ sets the time scale; w(x,t) captures the 

current activation of the field; and hw sets the resting level. WM(w) receives self 

excitation, , lateral inhibition from Inhib(v), 

, and excitatory input from PF(u), 

. 

),( txw&

∫ c ww

Λ′− xx )(

Λ′− xx )(

′′Λ′− xdtxwxx ww )),(()(

′′ xdtxvwv )),((

′′ xdtxuwu )),((

∫ c wv

∫ c wu

This field also receives direct target inputs, S(x,t), scaled by cs to be weaker (i.e., cs < 1), 

and includes spatially-correlated noise as described above. Again, this noise is 

independent from the noise sources in the other layers of the model. 

The nodes in the response layer are governed by the following equations: 

noisexdtxucrcrchrtr ucunnncccccrcc +′′Λ+Λ−Λ++−= ∫ )),(()()()(&τ  (2.9) 

 



www.manaraa.com

38 

noisexdtxwcrcrchrtr wnwccncnnnnrnn +′′Λ+Λ−Λ++−= ∫ )),(()()()(&τ   

The rate of change of each node’s activation, (where the constant τ determines the 

timescale and the subscripts c and n denote the change and no change nodes, 

respectively), is determined by the current activation level, -r, and the resting level of the 

node activation, hr. Each node has a self-excitatory connection, cccΛc(rc) or cnnΛn(rn), and 

receives inhibition from the other node, ccnΛcn(rn) or cncΛnc(rc). Additionally, the change 

node receives summed excitatory input from PF(u),

r&

∫ ′′Λ xdtxuc ucu )),(( , and the no 

change node receives summed excitatory input from WM(w), ∫ ′′ xdtx )),Λ wc wnw (( . 

(2.10) 

Lastly, noise represents white noise added to the activation of the node at each time step. 

The noise sources are independent for each node. 

Model simulations. The three-layer architecture described above is the first model 

to capture each of the processing steps in a change detection trial (as described in Chapter 

1): encoding the items, maintaining these items through the short delay, comparing the 

items held in working memory to the test array, and then generating a decision. To 

illustrate how the model works, I describe a set of sample simulations below. Critically, 

the DFT is able to make both change and no change decisions, and responds correctly on 

the majority of trials with one to four items in the array (as adults do in this task; see, e.g., 

Vogel et al., 2001). In addition, the model also makes errors that match the performance 

of research participants as the number of items in the sample array increases and exceeds 

the model’s capacity. Table 2 shows the parameter values for these simulations. 

Figure 5 shows the DFT performing a set size 3 (SS3) “correct rejection” trial—

responding no change when no items in the display changed. This figure shows time-

slices through all three layers at critical points in the trial: (B) when the sample array is 

presented; (C) when the memory items are being maintained during the delay; and (D) 

when the test array is presented and the decision is generated. To show the decision 

process, activation of the decision nodes (Figure 5A) is shown across time in the trial. 

The trial begins with the sample array presented for 500 ms; these inputs are projected 
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strongly into PF and weakly into WM. During the stimulus presentation (Figure 5B), self-

sustaining peaks form in WM, which lead to bumps of inhibitory activation in Inhib. 

These project inhibition back to PF and suppress the input-driven peaks there. During the 

900 ms delay (Figure 5C), the peaks in WM sustain and the associated patterns of 

inhibitory activation project to PF, leading to “troughs” of inhibition at these stimulus 

values in PF. When the test array is presented with the same three colors as in the sample 

array, these values are inhibited in PF as they are maintained in WM (see Figure 5D). 

Critically, the input is not strong enough to generate above-threshold (i.e., above 0) peaks 

in PF. As a consequence, when the decision nodes are engaged by boosting the resting 

level of these neurons after the test array is presented (see arrow in Figure 5A), the three 

peaks being held in WM send strong activation to the no change node, whereas the 

inhibitory troughs in PF prevent this layer from sending activation to the change node. 

The no change node easily “wins” the competition between nodes and generates a no 

change response. 

Figure 6 shows the DFT performing a SS3 “hit” trial—responding change when 

one item has changed. This trial begins as the previous trial did, with input from the three 

colors projecting to PF and WM, and quickly forming self-sustaining peaks in WM 

(Figure 6B). These peaks are maintained through the delay (Figure 6C), and the shared 

Inhib layer produces troughs of inhibition at the remembered values in PF. When the test 

array appears this time (Figure 6D), though, one of the colors has changed. This input 

projects to a relatively uninhibited region of PF, that is, at the new color value, and an 

input-driven peak forms in PF (see red circle in Figure 6D). As a consequence, when the 

decision nodes are boosted (Figure 6A), PF sends strong activation to the change node. 

Although activation is also sent from WM to the no change node, the activation to the 

change node is stronger (through a stronger projection from PF to the decision nodes than 

from WM; see Table 2). The change node is able to win the competition, rising above 

threshold and generating a change decision. 
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These two simulations illustrate how the comparison and decision mechanisms 

work for trials within the model’s capacity, that is, when the model is able to stably form 

a WM peak associated with each color value. These two response types, correct 

rejections and hits, are the most frequent in adults’ change detection performance. As the 

number of items increases and exceeds participants’ capacity, however, performance 

declines. In particular, the proportion of hits begins to decrease as participants make 

“miss” errors—no change responses on Change trials. These are the most common errors, 

which occur about three times more frequently than “false alarm” errors—change 

responses on No Change trials (e.g., Vogel, Woodman, & Luck, 2001). This primary 

decrease in hits along with the small increase in false alarms figure most prominently into 

the calculation of capacity using Pashler’s (1988) formula (see discussion above). 

This raises a central question for the DFT: can the mechanism proposed for 

change detection performance capture this capacity limitation? This is not a trivial 

issue—it is not enough for performance to simply decline as the set size increases, but the 

pattern across the four response types must be approximated to produce similar capacity 

estimates. Recently, we tested the capacity limits of the model described above 

(Simmering, Johnson, & Spencer, 2008a). Interestingly, these simulations revealed that 

capacity limits are not strictly defined by the number of items being held in WM in the 

DFT, which could be expected from typical explanations of change detection 

performance. Rather, three constraints in the model contribute to capacity estimates: the 

number of peaks held in WM, the details of the task, and the decision process. 

First, as might be expected, the number of peaks in WM is limited; this limit 

arises from the balance between excitation and inhibition in this layer. When inputs are 

projected into the model, self-sustaining peaks begin to form in WM. As excitation builds 

in WM, activation is projected to Inhib, leading to a bump of inhibition associated with 

each peak. Because the projection from Inhib back to WM is quite broad (a constraint we 

derive from neural data showing broad surround inhibition in ventral stream cortical areas 
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such as inferior temporal cortex, Desimone & Duncan, 1995), multiple bumps in Inhib 

will project broad global inhibition back to WM. This, in turn, slows the building of 

peaks in WM. At some point, the number of peaks in WM is high enough that the balance 

tips in favor of inhibition, and one or more WM peaks are either squashed or fail to build 

in the presence of input. 

Figure 7 illustrates this point with a simulation of the DFT performing a SS4 false 

alarm trial. This trial begins with four inputs projecting to PF and WM. As in the SS3 

trials, the model forms peaks in WM at these color values (see Figure 7B). During the 

delay (Figure 7C), however, these peaks are not all maintained: the peak at 80° dies out 

(see arrow). As a result, there is no corresponding trough of inhibition in PF at this color 

value (see red circle). When the same four colors are presented in the test array, therefore, 

an input-driven peak forms at 80° in PF (in fact, activation in PF did not fully return to 

baseline during the delay because there was no active inhibition from a peak in WM to 

squash it). When activation projects from PF and WM to the decision nodes, the input-

driven peak in PF is enough to boost the change node above threshold, producing a 

change response. Essentially, the model has identified this color as new because it was 

never “consolidated” in WM. 

This simulation also demonstrates that the details of the task will influence 

performance. Specifically, because the four colors that happened to be presented on this 

trial were near each other in color space, inhibition associated with these peaks grows 

quite strong and feeds back into WM. As a result, it is more difficult to maintain all of the 

peaks throughout the delay, and one of the peaks is squashed. In this example, then, 

capacity is determined in part by the details of the stimuli. 

In conjunction with the limit on the number of peaks in WM, the decision process 

also influences performance. Figure 8 illustrates this with a simulation of the DFT 

performing a SS4 miss trial. The trial begins with an array of four items, which project 

inputs at four color values into PF and WM. Again, the model forms peaks in WM at 
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these color values (see Figure 8B), and these peaks sustain throughout the delay (Figure 

8C). At test, one of these colors changes (i.e., yellow/40° changes to cyan/120°); as such, 

this new color value projects into a relatively uninhibited region of PF and WM. Instead 

of generating a correct change response, however, this input quickly builds a peak in 

WM, which in turn inhibits the activation in PF. Although the activation is slightly 

above-threshold in PF, this activation is not strong enough to generate a stable decision. 

Rather, the five peaks now being held in WM send activation to the no change node, 

which generates the (erroneous) response on this trial.  

Taken together, these simulations provide important insights into the nature of 

capacity in the change detection task. According to traditional IP accounts of this task, 

misses result from a failure to store all of the items in memory, while false alarms are 

often attributed to either “guessing” or a decision bias. In these DFT simulations, on the 

other hand, the exact opposite was true: the false alarm resulted from remembering only 

three of the four items, and the miss resulted from the decision process (i.e., the change 

signal being too weak relative to the no change signal). By analyzing performance in a 

real-time process model, the mechanisms behind performance can be directly examined. 

In this task, the building of activation in PF at test—the neural event that captures 

detection of a change—supports the generation of a change response. Therefore, in the 

model, “capacity” is not simply about the number of items being held in WM. Rather, 

performance depends on the amount of inhibition projected to PF, which is related to but 

not strictly defined by the number of peaks in WM.  

This is shown more directly in Figure 9. Figure 9A shows quantitative simulations 

of the DFT to capture adults’ performance from a set of 3000 simulations (50 

“participants” completing 12 trials at each of 5 set sizes) using the same parameters as in 

Figures 5-8 (see Simmering et al., 2008a). Note that, in this figure, correct rejections and 

false alarms sum to 1.0 (all No Change trials) and hits and misses sum to 1.0 (all Change 

trials). Figure 9B shows the average number of peaks held in WM over the delays on 
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these trials. Note that even though the model can hold at least four and sometimes five 

peaks in WM at the higher set sizes, the performance shown in Figure 9A yielded a 

capacity estimate of 3.98 items using the standard formula (Pashler, 1998). Thus, the 

number of peaks held in WM is not equal to capacity as it is traditionally estimated. This 

highlights the importance of moving concepts like “capacity” beyond previously-

accepted IP definitions, to the level of neurally-grounded process. Results of these 

simulations show that there is more to capacity estimates than appears at first blush. 

Given that the DFT reveals some hidden complexity in the concept of capacity 

and how this construct is measured in change detection, it is important to demonstrate the 

utility of this theoretical framework. In particular, does this theory generate any novel 

predictions? Johnson, Spencer, Luck, and Schöner (in press-a) have generated and tested 

several novel predictions about the nature of the memory representations underlying 

change detection performance. For instance, they showed that as peaks of activation are 

held in memory over the short delay, metric interactions can subtly change the accuracy 

of memory in predictable ways. In a series of experiments, participants were presented 

with sample arrays of three colored squares, two of which were similar to one another 

(e.g., two shades of purple), and one of which was distinctive. Based on findings in 

verbal working memory (e.g., Conrad, 1964), one might expect that the two similar 

colors will interfere with one another. The DFT predicts, however, that people should be 

better at detecting changes in similar colors. This occurs because two close peaks in the 

model will share laterally inhibitory interactions which effectively “sharpen” the 

representation of the two similar items. These two sharper peaks can then support a more 

precise detection of changes in the display. This is precisely what adults showed: change 

detection performance was enhanced when one of the close items was probed relative to 

when a distinctive color was probed. Thus, the DFT is able to capture established patterns 

of performance in change detection, as well as generate novel predictions about 

performance. 
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Preferential Looking in the Dynamic Field Theory 

The previous section described a new model of visual working memory and 

change detection. In this section, I describe how this work has been recently adapted to 

capture the processes that operate in the infant preferential looking task. 

Spencer and colleagues (Spencer & Perone, 2008; Spencer, Simmering, Perone, & 

Johnson, 2007a) proposed a five-layer dynamic neural field model that builds on the 

model of adult change detection described above. Two modifications were made to the 

three-layer architecture to develop the five-layer model described here. First, a type of 

Hebbian learning was added to the model through the addition of two long-term memory 

(LTM) fields, one coupled to each of the excitatory fields. As activation builds in PF or 

WM, traces of activation are laid down at associated sites in the LTM fields. Such traces 

feed back onto PF and WM, biasing the model to build peaks of activation at feature 

values that were activated earlier in the trial, leading to a form of Hebbian learning. 

Second, rather than a decision system to generate change/no change responses, the model 

was equipped with a simple fixation system to capture autonomous looking behavior. 

This system consists of three self-excitatory and mutually competitive nodes: one 

associated with the left display, one for the right display, and one for looks away from the 

testing apparatus. When one of the nodes “wins” this mutual competition by piercing 

threshold (i.e., above zero activation), the system “fixates” the corresponding location 

(i.e., the left display, right display, or neither). This system is described in more detail 

below.  

Model equations. The equations for the three-layer architecture were given 

previously. Thus, the present section describes the model equations for the preferential 

looking model which add LTM fields and an autonomous looking system to the basic 

three-layer architecture. 
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The LTM fields, LTMPF(ultm) and LTMWM(wltm), are governed by the active states 

on the associated excitatory field (note that, for simplicity, only the LTMPF(ultm) equation 

is shown): 

( ) ( )txutxutxu ltmdecayltmbuildltmltm ,,),( &&& +=τ  (2.11) 

The rate of change of activation, , for each neuron in the long-term memory layer 

across the spatial dimension, x, as a function of time, t, is specified by two components: 

the build-up of activation, , and the decay of activation, . These components 

were specified as follows: 

),( txultm&

ltmbuildu& ltmdecayu&

[ ] )),((),((),(),( txutxutxutxu ltmltmbuildltmbuild θτ ⋅Λ+=& ; (2.12) 

[ ])),((1),(),( txutxutxu ltmltmdecayltmdecay θτ −⋅=& . (2.13) 

The shunting function θ (θ = 1 if u(x,t) > 0 and θ = 0 otherwise) determines where the 

activation is built up and maintained in ultm. The build-up rate is relatively fast (τltmbuild = 

10 for all simulations) while the decay rate is much slower (τltmdecay = 100,000 for all 

simulations); this allows previous memory to be maintained over longer periods. 

Separating the build-up and decay mechanisms approximates accumulation and 

depression of synaptic change (Deco & Rolls, 2005).  

Nodes in the fixation system are specified by the following equations: 

∫ ′′Λ+++Λ−Λ−Λ++−= xdtxucccfcfcfchftf uluconsttransaalarrlrllllfll )),(()()()()(&τ  (2.14) 

∫ ′′Λ+++Λ−Λ−Λ++−= xdtxucccfcfcfchftf uruconsttransaarallrlrrrrfrr )),(()()()()(&τ  (2.15) 

(2.16) transllalrraraaaafaa cfcfcfchftf +Λ−Λ−Λ++−= )()()()(&τ  

The rate of change of each node’s activation,  (where the constant τ denotes the time 

scale, and subscripts l, r, and a indicate the left, right, and away nodes, respectively) is 

determined by the current level of activation, f, and resting level of the node, h.  The 

resting level of each node is dynamic and is specified by: 

f&

downffrestffh hhhahth ⋅Λ++−= )()(&τ , (2.17) 
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with a slope (a). Note that the dynamic resting level of the node decreases toward the 

attractor specified by hdown when activation of the node (f) surpasses threshold (i.e., 0). 

When activation of the node drops below threshold, the resting level dynamically returns 

to the attractor specified by hrest. 

The nodes also receive non-specific input to draw fixation to a stimulus. In 

particular, to indicate the onset of a stimulus, a transient attentional capture (ctrans) is sent 

to the left and right nodes. Moreover, all nodes received constant input, cconst, 

corresponding to the salience of the stimulus being presented. For the left and right 

nodes, this reflected that something has been presented on one of the displays; for the 

away node, the input was much weaker to reflect the possibility that visual features other 

than the displays might capture attention and draw fixation away from the experimental 

apparatus. At each time step, independent white noise was applied to the input cconst. 

The fixation nodes are coupled to PF(u) such that fixation to one display (e.g., 

activation of the left node) gates input of the feature values at the fixated location into 

PF(u); in turn, above-threshold activation in PF(u) supports activation of the currently 

active looking node. Thus, the equation for PF(u) becomes: 

++−= uhtxutxu ),(),(&τ ∫ ′′Λ′− xdtxuxxc uuuu )),(()(

ctxfctxf ltmrurlul∫ ′−− xxcuv ( ′′Λ xdtxvuv )),(() c noiseu ltm

(2.15) 

++++ ),(),( , 

such that the terms cul and cur are zero when the node is not active, and one when the 

node is active. In addition, all simulations presented here used the same strength of the 

projection from the LTM fields, that is, cultm = cwltm = 0.1. 

Model simulation. Figure 10 shows a sample simulation in which the “infant” 

version of this model performs a single SS3 preferential looking trial. The model first 

fixates the No Change display (blue line in Figure 10A), which gates input from the three 

colors presented in that display and projects input strongly to PF and weakly to WM (as 

in the model of change detection described previously). This input produces three self-
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stabilized peaks in PF initially (see circle Figure 10B), which help to build three self-

sustaining peaks in WM (see circle in Figure 10C; note that in this “overhead” view of 

the fields, fuchsia “hot spots” indicate peaks). As with the change detection model, the 

peaks sustaining in WM projects inhibition back into PF via Inhib (not shown); this 

destabilizes the self-stabilized peaks in PF and drops activation back below threshold. 

Because activation dropped below threshold, PF is no longer supporting fixation, and the 

node drops back below threshold. 

Next, the model switches to look at the Change display when activation of this 

node rises above threshold (see “switch” arrow in Figure 10A). During this fixation, the 

model builds peaks associated with the three colors; as these peaks begin to suppress the 

self-stabilized peaks in PF, the input “blinks” off. When the input comes back on, one of 

the colors has changed (see dashed circle in Figure 10C). This leads to a new self-

stabilizing peak in PF, which continues to support activation of the fixation node to 

continue looking at the Change display. Before the next “blink” to change to another new 

color, however, support for this node has dropped enough that noise can cause a switch 

(see “switch” arrow in Figure 10A). 

Now the model fixates the No Change side again. At this point, I have added a 

time-slice through the fields to show how activation is evolving (see vertical arrow across 

fields; Figure 10D-E). As Figure 10E shows, there are two peaks sustaining in WM (at 

40° and -80°); these correspond to two of the three colors in the No Change display. One 

of these peaks (40°) has been maintained since the last fixation; as a result, it is already 

inhibiting the associated region of PF and preventing a self-stabilizing peak (see arrow in 

Figure 10D-E). For the second color, activation at one value (-80°) was near threshold at 

the beginning of this fixation, and therefore quickly builds a peak (although it is not yet 

strong enough to suppress the self-stabilizing peak in PF). The third color (-120°) is 

slower to build; as a result, activation in PF is still strong. 
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At this point in the trial, the model is beginning to show a change preference: 

fixation of the Change display continued through multiple stimulus presentations, while 

fixation of the No Change display was quickly released. How does this behavior relate to 

the underlying memory representation? The model tends to look away from items that are 

familiar—but in this architecture and this task, familiarity has two timescales. First are 

the items that are being actively maintained, that is, the self-sustaining peaks in WM. 

These also form the basis for change detection performance, as described above. But 

recall that this architecture has the addition of LTM fields. Each time a peak builds, it 

lays down a trace in the associated LTM field (e.g., WM peaks leave traces in LTMWM). 

At each subsequent time step, this activation in LTMWM feeds back into WM. When input 

is then presented at these familiar color values, peaks will build more easily and quickly, 

and will also be more resistant to decay or noise. Thus, even if the model is not actively 

holding an item in WM (i.e., sustaining a peak) at the time it is presented, it will tend to 

“look away” (i.e., release fixation) more quickly than if the item had no trace in LTM. 

This point is illustrated with the next time slice (second vertical line across fields; 

Figure 10F-G). This slice was taken at the beginning of the model’s next fixation of the 

No Change display. As can be seen in Figure 10G, activation is above threshold for two 

of the colors on this display (-80° and 120°; note that two colors from the previous 

display, -40° and 160°, are also above threshold) and about to pierce threshold for the 

third color (40°). These peaks then suppress activation in PF and inhibit support of the 

fixation node. Over the course of many fixations, this quick building and stronger 

maintenance of familiar colors will produce a preference to look at the Change display. 

The model’s performance in this simulation highlights how this task taps VWM: 

if peaks that correspond to the colors in the No Change display build quickly in WM 

(with support from LTMWM), this inhibits PF and removes support of the fixated node. 

Essentially, the model prefers not to look at items that are held in memory; rather, it looks 

to items that are new or, in this case, changing. The model shows a change preference 
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when it is able to successfully build WM peaks for items on the No Change display; only 

then is the fixation system freed to look at the other display. This is where capacity limits 

emerge in the infant model. If, for example, neural interactions in WM allow only two 

peaks on the No Change side to build simultaneously, then one of the colors in PF would 

not be suppressed because there was no corresponding WM peak. Consequently, the 

model would continue to fixate the No Change side and fail to show a robust change 

preference score. Change preferences in the preferential looking task, therefore, arise 

from detection of sameness, that is, successful formation of a WM for items on the No 

Change display. Thus, although performance in this task depends on the same general 

processes from the adult change detection task—encoding, maintenance, and 

comparison—the different structure of the task—inputs blinking on and off rapidly across 

two displays throughout the trial, with no explicit decision required—taps the same 

system in a very different way. 

The simulation in Figure 10 shows that the DFT can capture the processes that 

underlie performance in the preferential looking paradigm. But can this model capture the 

details of infants’ performance including developmental changes in capacity between 6 

and 10 months? Figure 11 shows that the answer is ‘yes’. Spencer and colleagues (2007a; 

Spencer & Perone, 2008) were able to capture the general pattern of data reported by 

Ross-Sheehy et al. (2003, Experiment 1). In particular, the model provided good fits of 

the data for 6- and 10-month-old infants at set sizes one and three. To capture the 

developmental change in capacity between 6 and 10 months, only one change was 

necessary in the tuning of the model: the “older” model had slightly stronger inhibitory 

projections back to the excitatory layers (see also Simmering et al., 2008b). This helped 

build more stable peaks of activation in both layers, enabling the model to support 

multiple peaks simultaneously. 

The DFT account of preferential looking moves beyond the standard IP approach 

in two important ways. First, it provides a specific developmental mechanism—change in 
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the strength of neural interactions—that underlies the increase in capacity between 6 and 

10 months. Second, it provides an account for how the only behavioral measure in this 

task—looking behavior—relates to the underlying memory system. Importantly, this link 

has led to novel predictions about infants’ performance in preferential looking tasks. In 

particular, Perone and Spencer (2008; see also Perone et al., 2007) have demonstrated 

that the frequency of switches between the two displays is related to the formation of 

working memories for the objects at each fixated location. WM peaks that build stronger 

and faster over repeated presentations lead to stronger inhibition projected back to PF. 

This, in turn, results in faster release of fixation and an increase in the tendency to look 

back and forth between the two displays. Thus, more frequent switching between displays 

corresponds to more robust memory peaks in the model. This has been verified 

experimentally, showing that changes in the rate of switching over familiarization trials 

predicts whether infants will show familiarity or novelty preferences at test (Perone & 

Spencer, 2008).  

Toward a Unified Theory of Visual Working Memory and 

Changes in VWM Capacity over Development 

In the previous sections, I reviewed how the DFT has been applied to adults’ 

change detection performance and infants’ preferential looking performance. Both of 

these models have generated novel predictions in their respective tasks (for change 

detection, see Johnson, 2008; Johnson et al., in press-a; for preferential looking, see 

Perone & Spencer, 2008). These models provide an account of the end points of the 

developmental trajectory probed in the VWM literature and provide the foundation for 

my work addressing the question raised in Chapter 1: what is the source of the 

discrepancy between capacity in preferential looking at 10 months and capacity in change 

detection at 5 years? To this end, the current section describes a unified model I 
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developed that combines the mechanisms described above to perform both tasks within 

the same model.  

To examine whether a unified model can perform both tasks, I combined the adult 

change detection model from Simmering, Johnson, & Spencer (2008a), using the 

parameters listed in Table 2, with the LTM fields and fixation system from Spencer and 

Perone (2008). I first examined whether the addition of the LTM fields disrupted the 

change detection performance reported in Simmering et al. In particular, I ran a set of 

change detection simulations using the five-layer model, which produced comparable 

results (see Figure 8 above). Next, I examined how the model performed in the 

preferential looking task. In Ross-Sheehy et al.’s (2003) Experiment 3, they tested infants 

in two trials each at set sizes 2, 4, and 6. Using these task details, I ran 50 simulations of 

the model. The results of these simulations, revealed significant change-preference scores 

at all three set sizes (0.64 in SS2, t = 8.12, p < .001; 0.61 in SS4, t = 5.47, p < .05; 0.58 in 

SS6, t = 1.66, p = .05). Thus, the same model which showed a capacity of 3.95 items in 

change detection shows a capacity estimate of at least 6 items when put into the 

preferential looking task. This leads to two behavioral predictions:  

(P1) adults should produce higher capacity estimates than infants in the 

preferential looking task;  

(P2) these capacity estimates from preferential looking should be higher than 

estimates from change detection when the same individuals are tested in both 

tasks.  

These predictions are note-worthy for two reasons. First, adults have never been tested in 

the preferential looking task. Second, I am predicting that adults will show a capacity of 

at least 6 items in this task, which is higher than the well-replicated 3-4 items generally 

accepted in the VWM literature (e.g., Vogel et al., 2001). 

Although these simulations provide a strong foundation for these two predictions, 

they also raise an important question: does the preferential looking task provide any 
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index of the capacity estimated in change detection? Put differently, is performance 

directly related across these two tasks? The results described above suggest one 

possibility: change preference scores should drop as set size surpasses the capacity as 

estimated in change detection (i.e., capacity was estimated at 3.95 items in change 

detection, and preference scores for SS4 and 6 were lower than for SS2). A second 

possibility is also suggested by previous work by Perone and Spencer (2008) using the 

preferential looking model described above. Their simulations suggest that switch rate—

how often the model looks back and forth between displays—provides an indication of 

the robustness of the underlying working memory representation. In particular, stronger 

peaks in WM (i.e., a more robust memory representation) produce stronger inhibition that 

feeds back to PF; as a result, the self-stabilized peaks in PF are suppressed more quickly, 

which causes the model to look away more quickly. Therefore, strong memory 

representations lead to fast rates of switching. 

This prediction of the model has been verified experimentally (Perone & Spencer, 

2008): in a paired-comparison version of the preferential looking task, infants with faster 

switching early in familiarization showed novelty preferences at test (indicating a robust 

memory for the familiarization stimulus), whereas infants with slower rates of switching 

show familiarity preferences at test. To generalize these findings to the version of the 

preferential looking task used here, switching should be higher for set sizes within 

capacity (as estimated in change detection) and lower for set sizes beyond capacity. In 

my simulations of the adult model in the preferential looking task, this would correspond 

to higher switching in SS2 and SS4, and lower in SS6. This relationship between capacity 

in change detection and performance preferential looking leads to a third prediction:  

(P3) although capacity estimates should differ across tasks when testing the same 

individuals in both tasks (see P2), capacity in change detection should be 

related to change preference scores and switching across set sizes. 
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These first three predictions test key components of the DFT account of 

performance in these two tasks. However, they primarily concern adults’ performance 

rather than why VWM capacity estimates differ between 10 months and 5 years. Can this 

model also provide insight into the development of VWM capacity? The second 

prediction above hints at one component of this discrepancy: when testing the same 

adults in both tasks, capacity estimates should be higher in preferential looking than in 

change detection. Generalizing this prediction over development, then, one might expect 

that children will also show higher capacity estimates in preferential looking than in 

change detection. Moreover, children should also show the predicted relationship across 

tasks if both tasks do, in fact, tap the same VWM system. 

The question of developmental change points to the final question I am asking 

with this project: what is the developmental mechanism behind developmental changes in 

VWM capacity? As described in Chapter 1, previous IP accounts have failed to propose a 

mechanism for the increases in capacity between 6 and 10 months in preferential looking 

or between 5 and 10 years in change detection. More generally, developmental changes 

in capacity in other domains have pointed to two sources of change: increases in strategy 

use and neural myelination. Neither of these sources, however, has been linked to specific 

processes that capture how developmental changes in capacity occur.  

Within the framework of the DFT, the Spatial Precision Hypothesis (SPH) 

provides an established account of developmental change from infancy through middle 

childhood and into adulthood in spatial cognition (see Chapters 4 and 5 for further 

discussion, see also Spencer et al., 2007b). According to the SPH, development occurs 

through the strengthening of neural interactions within cortical fields, specifically within 

the locally excitatory and laterally inhibitory connections among neurons. With weaker 

interactions early in development, the relative stability of the self-stabilizing and self-

sustaining attractor states changes. In particular, weak interactions make it harder for a 

neural field to move into a self-sustaining state; practically, this means that peaks may 
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require stronger input or more time to build. In addition, less stable peaks can be de-

stabilized by relatively small perturbations (e.g., noise or interference)—that is, peaks 

will “die out” more easily. This hints at how the relative stability of self-sustaining peaks 

can have important consequences for behavioral development: by this view, children 

should have a harder time actively maintaining information in working memory, a claim 

which is consist with empirical observations in early development (see, e.g., Dempster, 

1981). 

Could the Spatial Precision Hypothesis produce developmental changes in VWM 

capacity? A sample simulation of a “child” change detection trial is shown in Figure 12; 

for this simulation, I used the parameters from Table 2 and simply scaled the local 

excitation (c_uu and c_ww) and lateral inhibition (c_uv and c_uw) by 0.5. As this figure 

shows, even though four items were presented, only three peaks are formed and sustained 

in WM (see arrow in Figure 12C); thus, when the same four items are presented at test, 

the model makes a “false alarm” error, indicating that an item changed (i.e., detecting a 

peak in PF) even though it did not. Note that, although this peak in PF was quite weak, 

the peaks in WM were also weak, therefore reducing the input to the no change node and 

allowing the change node to dominate. This sample simulation provides initial support 

for the fourth prediction I tested, in this case, using simulations of the unified model (see 

Chapter 4):  

(P4) implementing the SPH in the unified model will capture developmental 

changes in VWM capacity, thereby providing support for the hypothesis that 

changes in the strength of neural interactions over development underlie 

changes in capacity.  

To summarize, I will test four predictions with experiments and simulations in 

subsequent chapters. First, a series of experiments will test children (ages 3, 4, and 5 

years) and adults in both change detection and preferential looking. These experiments 

will test the first three predictions: 
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(1) adults, and possibly children, will show a higher capacity than infants when 

tested in preferential looking—at least 6 items, which is also higher than the 

commonly accepted adult-like capacity of 3-4 items;  

(2) estimates of capacity measured from the same individuals in the change 

detection task will be substantially lower than 6 items; and  

(3) because these two tasks depend on the same underlying VWM system, there 

should be a relationship between capacity measured in one task and capacity 

measured in the other, in particular, change preference scores and switch rate 

in preferential looking should relate to capacity in change detection.  

Finally, in Chapter 4, I will use these empirical data to test my fourth prediction, that:  

(4) implementing the Spatial Precision Hypothesis in the unified model will 

capture developmental changes in capacity in these tasks.  

In particular, I will present quantitative simulations capturing data from both tasks across 

all four points in development probed experimentally. 

If these four predictions are supported, the current project will provide strong 

support for the first formal model to address the processes that underlie performance in 

both change detection and preferential looking. Moreover, this project will provide strong 

tests of the first formal model to capture developmental changes in either task using a 

specific mechanism that can be directly linked to developmental changes in capacity. 
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Figure 3. Two-layer neural field model of the type proposed by Amari (1977). (A) The 
model consists of a single layer of feature-selective excitatory neurons reciprocally 
coupled to a similarly-tuned layer of inhibitory interneurons; excitatory and inhibitory 
projections between layers are shown with green and red arrows (respectively). Neurons 
coding for similar values along the metric dimension in the excitatory field engage in 
locally excitatory interactions (curved solid arrow), and transmit excitatory activation to 
the inhibitory layer. Neurons in the inhibitory layer transmit broad lateral inhibition back 
to the excitatory field (dashed arrows). This architecture can exhibit self-stabilizing (B) 
and self-sustaining (C) attractor states. See text for additional details.  
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Figure 4. The Dynamic Field Theory (DFT) consisting of three layers: (A) a perceptual 
field (PF), (B) an inhibitory layer (Inhib) and (C) a working memory field (WM). In each 
panel, time is across the x-axis, activation on the y-axis, and color value on the z-axis. 
Arrows indicate excitatory (green) and inhibitory (red) projections between layers. These 
fields are coupled to two self-excitatory, mutually-inhibitory nodes: one for change 
decisions receives activation projected from PF; one for no change decisions receives 
activation projected from WM.  
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Figure 5. A simulation of the DFT performing a SS3 “correct rejection” trial in the 
change detection task. This trial consisted of three colors presented for 500 ms, followed 
by a 900 ms delay, then presentation of the original three colors. (A) Activation (y-axis) 
of the change (blue) and no change (red) decision nodes over time (x-axis). (B-D) Time-
slices through PF, Inhib, and WM show activation (y-axis) across color values (x-axis) at 
three critical points during the trial.  
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Figure 6. A simulation of the DFT performing a SS3 “hit” trial in the change detection 
task. Panels and axes are as in Figure 5.  
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Figure 7. A simulation of the DFT performing a SS4 “false alarm” trial in the change 
detection task. Panels and axes are as in Figure 5.  
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Figure 8. A simulation of the DFT performing a SS4 “miss” trial in the change detection 
task. Panels and axes are as in Figure 5.  
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Figure 9. Simulation results for change detection set sizes one through five from 
Simmering et al. (2008). (A) Portion of trials with each response type. Note that 
proportions are shown relative to the number of Change and No Change trials; therefore 
correct rejections (CR) and false alarms (FA), as well as hits (H) and misses (M), sum to 
1.0. (B) Mean number of peaks in WM at the end of the delay. Error bars show standard 
error.  
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Figure 10. A simulation of the five-layer DFT performing a SS3 preferential looking 
trial. (A) Activation (y-axis) of the fixation nodes over time (x-axis). Two of the five 
layers, PF (B) and WM (C), are shown with time along the x-axis and color along the y-
axis. (D-G) Time slices though these layers are also shown, with color along the x-axis 
and activation along the y-axis.  
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Figure 11. Approximate infant data from Ross-Sheehy et al. (2003) and DFT simulations 
from Spencer et al. (2007).  
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Figure 12. A simulation of the DFT performing a change detection trial with parameters 
scaled to capture early development. Panels and axes are as in Figure 5.  
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Table 2 

Parameter Values from Change Detection Simulations 
   self- excitatory  inhibitory   
Layer/Node τ h excitation projection(s) projection(s)  input noise 
PF(u) 80 -7 cuu = 3.10  cuv = 1.85 ctar = 18 qu = 0.1 
   σuu = 3  σuv = 26 σtar = 3 σq = 10 
     kuv = 0.05 
Inhib(v) 10 -12  cvu = 2   qv = 0.1 
    σvu = 7   σq = 10 
    cvw = 1.95 
    σvw = 5 
WM(w) 80 -5 cww = 3.15 cwu = 1.5 cwv = 0.6 ctar = 4  qw = 0.1 
   σww = 3 σwu = 5 σwv = 42 σtar = 3  σq = 10 
     kwv = 0.08 
Change(rc) 80 -5 ccc = 1.85 cuc = 1 ccn = 14  ccu = 1.005 qc = 0.075 
No Change(rn) 80 -5 cnn = 1.85 cwn = 1 cnc = 14 cnw = 0.14 qn = 0.075 
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CHAPTER 3 

EMPIRICAL TEST OF PREDICTIONS 

The previous chapter described the processes in the DFT that underlie 

performance in the adult change detection task and the infant preferential looking task, 

with the goal of reconciling the discrepancy in capacity estimates in the literature 

between 10 months (3-4 items in preferential looking) and 5 years (1.5 items in change 

detection). By implementing both tasks in the same model, I was able to explain the 

processes at work in each task, showing that these tasks do, in fact, tap the same visual 

working memory system, but in different ways. The change detection task depends on the 

maintenance of peaks in WM and an explicit comparison at test, leading to a single 

decision on each trial. The preferential looking task, on the other hand, depends on the 

initial building of peaks for the No Change display over repeated presentations, which 

can support the reliable detection of sameness over the course of the many looking 

decisions that occur on each trial. The differences across tasks led to a set of specific 

predictions by the DFT: capacity estimates for older children and adults should be greater 

than four items in the preferential looking task; capacity estimates for the same 

participants should be substantially lower in change detection; and there should be 

correlations between specific measures of capacity from these tasks over development 

because they both tap the same VWM system. 

The literature currently includes a large empirical gap between 13 months (the 

oldest age tested in preferential looking) and 5 years (the youngest age tested in change 

detection), with no data from either task in this intermediate period of development. To 

try and bridge this gap, the change detection task must be modified to allow children 

younger than 5 years to make it through the task. Thus, I conducted a pilot study to probe 

the youngest age that could reliably perform a more child-friendly version of the task.  
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To modify the change detection task for young children, I used the study by Riggs 

et al. (2006) as a starting point. In this study, the authors modified the standard task in 

two ways relative to the task used with adults. First, the total number of trials required of 

each participant was reduced to 12 (6 Change, 6 No Change) at each set size of one to 

five items (compared to, e.g., 40 trials per set size; Vogel et al., 2001). Second, the trials 

were blocked by set size and ordered such that the easier set sizes (one and two) were 

first, followed by the higher set sizes. 

Pilot data with 3- to 4-year-old children revealed two specific problems young 

children experienced with this task that prompted additional modifications. First, it was 

difficult for young children to understand the required comparison between the sample 

and test array. Some children, for instance, would compare the items within a single 

array; other children compared the items in the test array on one trial to the sample array 

on the subsequent trial. To help children understand the appropriate comparison between 

arrays, I changed the description to that of a card matching game, and then presented 

items in each array on a rectangular background to identify them as a “card”. To reduce 

interference across trials, the spatial location of the cards alternated between the left and 

right sides of the screen from trial to trial. The second problem for children was viewing 

and encoding all of the stimuli during the short presentation of the sample array. Children 

tended to look around the experimental room between trials, so extra display time was 

needed to ensure they oriented to the computer screen and viewed each display. This was 

addressed first by increasing the duration of the sample array from 500 ms to 2 s. In 

addition, rather than presenting the items in randomly-selected locations on each trial, 

they were clustered near the center of the card at fixed locations on each trial. This 

reduced the need for children to scan the screen to find all of the items during encoding. 

With these modifications, children as young as 3.5 years of age can reliably 

perform the change detection task. This defines the youngest age that may be tested in 

this task. I then selected three age groups to participate: 3.5 years, 4.25 years, and 5.0 

 



www.manaraa.com

69 

years. In addition, a group of adults was included for comparison. All participants 

completed both the change detection task (using the modifications described above) and 

the preferential looking task. Note that participants completed the preferential looking 

task first so as not to bias them to look for changes in the displays based on their 

experience in the change detection task where explicit verbal decisions are required on 

each trial. 

In the remainder of this chapter, I describe participants’ performance in the 

preferential looking task in Experiment 1. A subset of these participants also completed 

one of two conditions of change detection, color or shape. I included these two versions 

of the change detection task to test the generality of changes in VWM capacity, that is, 

whether developmental increases in capacity for colors are specific to color memory, or 

apply to visual memory for other features as well. The results of these change detection 

tasks are described in Experiments 2 and 3. Then, I describe comparisons across these 

two tasks to provide a critical test of the DFT framework. Even though these two tasks 

are predicted to generate different capacity estimates, the DFT asserts that performance in 

each task depends on the same underlying VWM system. Thus, although the results may 

diverge across experiments, there should be correlations in performance across the two 

tasks that highlight the unified system underlying performance. 

Experiment 1: Preferential Looking 

Method 

Participants. A total of 155 children participated in this study: 56 three-year-olds 

(M age = 3 years, 4.46 months; SD = 2.52 months), 44 four-year-olds (M age = 4 years, 

2.87; SD = 1.93 months), and 55 five-year-olds (M age = 5 years, 0.81 months; SD = 1.74 

months). An additional 7 children participated but were not included in analyses due to 

incomplete data (1 five-year-old; see below for details), equipment failure (1 five-year-

old), or experimenter error (1 three-year-old, 2 four-year-olds, 2 five-year-olds). Forty 
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adults also participated in this study (M age = 21 years, 5.35 months; SD = 3.53 years). 

An additional 2 adults participated but were not included in analyses because they wore 

glasses; the glare from the computer monitors made it impossible to code their looking. 

All participants reported normal or corrected-to-normal vision and no history of color-

blindness. 

Apparatus. The apparatus and stimuli were identical to those used in the infant 

study described previously (Ross-Sheehy, Oakes, & Luck, 2003, Experiment 3). Stimuli 

were presented on two 17-inch ViewSonic monitors using a Macintosh G3 computer. The 

monitors were positioned side by side with a 22 cm gap between them. Participants were 

seated approximately 100 cm from the displays (note that exact viewing distance and 

angle differed across participants due to variations in height). From this distance, each 

monitor subsumed approximately 18.26° (w) by 13.50° (h) of visual angle. The total 

eccentricity of the displays was 88 cm (approximately 47.5° of visual angle). 

As shown in Figure 2, a solid gray background was continuously present on both 

monitors, with arrays of colored squares blinking on and off together; one monitor 

contained the changing display and the other monitor contained the non-changing 

display. Each display contained two, four, or six colored squares that measured 

approximately 5 cm by 5 cm. The set size (i.e., the number of squares on each monitor) 

was identical for the two displays and remained constant throughout a trial. The initial 

square colors on each trial were selected at random from a set of nine colors: green, 

brown, black, violet, cyan, yellow, blue, red, and white (see Table 3 for RGB values). 

The colors within a display were always different from each other, but colors could be 

repeated across the two displays. 

The squares on both monitors appeared simultaneously for 500 ms, disappeared 

for 250 ms, and continued appearing and disappearing at these intervals for a total of 20 s 

per trial. For the No Change display, the colors remained constant throughout the 20 s 

trial. For the Change display, one color would change to a new color at each onset; this 
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square was selected at random for each presentation, and the new color was selected at 

random from the set of colors that was not currently included in that display. 

Procedure and Experimental Design. The procedure for this task was adapted 

from previous infant studies (Ross-Sheehy et al., 2003, Experiment 3) for use with older 

children. After completing the consent form, the participant was taken into the testing 

room; a parent sometimes accompanied child participants, but most children completed 

the task alone. The participant was seated on a chair (or, for some of the younger 

children, in a parent’s lap), facing the two computer monitors. If a parent was seated with 

the child in the testing room, s/he was given occluding glasses to wear during the session. 

A large black curtain hung from ceiling to floor with openings to display the two 

monitors, as well as a small black box used as an attention-getter. The black box 

produced a red light and audible tone to draw the participant’s attention at the beginning 

of each trial.  

In contrast to the infant version of this task, participants were given brief 

instructions to ensure that they would attend to the stimuli during the task. Specifically, 

they were told that they were going to watch six short videos, and that the experimenter 

would ask them questions about the videos at the end. No further instructions were 

provided to prevent potential bias in looking behavior. After the task was completed, the 

experimenter asked the participant whether he or she noticed any difference between the 

two displays in the videos. Most children’s responses referred to changes in the numbers, 

positions, and colors of the items across trials; only one child (a 5-year-old) correctly 

reported that the colors would change on one screen while the colors on the other screen 

did not change. Additionally, about 70% of adults reported this difference across 

displays. 

Each session included two trials at each of the three set sizes—one of each with 

the Change display on the left, and one with the Change display on the right—for a total 

of six trials. The order of trials, as well as which side the Change display was on, was 
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randomly determined for each participant. The experimenter was seated behind the 

curtain to initiate each trial and record the duration of participants’ looking to each of the 

two monitors using a program developed for the Macintosh (Habit: Cohen, Atkinson, & 

Chaput, 2000). For some sessions, a trained observer was not available to code looking 

during the session. These sessions were coded offline using the video recording. In all 

cases, the coder was unaware of which images were being presented on the monitors. 

Each trial began with the attention-getter (the black box with a beeping red light), 

and the experimenter pressed a key once she judged that the participant was attending to 

the light. For the duration of the 20 s trial, she then coded the child’s gaze as looking to 

the left or right monitor. If the participant looked away from the displays, no look was 

recorded. Upon completion of a trial, the attention-getter was reactivated, beginning the 

same sequence for the next trial. This sequence was repeated across all six trials. The 

entire task took less than 5 minutes to complete. 

Results 

Before analyzing the results, I checked the data for trials on which the participant 

fixated only one of the displays. I chose to exclude these trials because it was impossible 

for the participant to detect a difference between the two displays if only one display had 

been fixated. This led to the exclusion of 16 trials from 12 children’s data; these trials 

were roughly evenly distributed across set sizes. Half of these trials were fixations of 

only the Change display, while the other half were fixations of only the No Change 

display. Five of these 16 trials were contributed by one child (a 5-year-old), leading to 

exclusion of all but one trial of this participant’s data; as a result, this participant was 

excluded from analysis. 

Total Looking Time. Total looking time was computed as the time (in s) that the 

participant spent looking at either display on each trial. Scores were then averaged across 

the two trials to the same set size. Mean total looking times are shown in Figure 13A. As 
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this figure shows, total looking time varied little across set size and age, although adults’ 

looking time was higher than children’s. I analyzed these data in a two-way ANOVA 

with Set Size (2, 4, 6) as a within-subjects factor and Age (3 years, 4 years, 5 years, 

adult) as a between-subjects factor. This analysis revealed only a significant main effect 

of Age (F3, 191 = 17.74, p < .001). Follow-up Tukey HSD tests (p < .05) showed that 

adults looked longer on average than 3-, 4-, or 5-year-olds looked; children’s looking 

time did not differ across age groups. There were no differences in looking time across 

set sizes. 

Change-Preference Scores. Change-preference scores were computed as the time 

(in s) the participant spent looking to the Change display divided by the total looking 

time to both displays (i.e., Change / [Change + No Change]) for each trial. Scores were 

then averaged across the two trials to the same set size. Mean change-preference scores 

for each age group are shown in Figure 13B. As this figure shows, change-preference 

scores were generally higher for SS2, with adults showing the highest scores. These 

scores were analyzed in an ANOVA with Set Size (2, 4, 6) as a within-subjects factor and 

Age (3 years, 4 years, 5 years, adult) as a between-subjects factor. This analysis revealed 

only a significant main effect of Set Size (F2, 382 = 5.91, p < .01). Follow-up Tukey HSD 

tests (p < .05) showed that change-preference scores for SS2 were significantly higher 

than for SS4 and SS6; change-preference scores for SS4 and SS6 did not differ from each 

other. There were no differences in change-preference scores across ages. Note that the 

difference in scores over set sizes may be related to capacity estimates in change 

detection (as suggested in Chapter 2); this possible relationship will be explored further 

in the comparisons across tasks at the end of this chapter. 

Mean change-preference scores were also compared to chance (0.5) using two-

tailed t-tests. These analyses revealed that change-preference scores were significantly 

above chance for all set sizes for all ages (see Table 4). These results suggest that 3-, 4-, 

and 5-year-old children and adults have a VWM capacity of at least 6 items, although 
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capacity estimates may have been higher if trials with higher set size had been included. 

The estimates of capacity from this task show an increase relative to the performance of 

10-month-olds, but also suggest a higher capacity than the typical 3-4 items shown by 

adults in change detection studies (e.g., Vogel et al., 2001), confirming my first 

prediction. 

Switches between Displays. Switches between displays were counted as the 

number of times the participant looked from one display to the other (with or without an 

intervening look away) during each of the six trials. The number of switches was 

averaged across the two trials to the same set size. Mean switch counts are shown in 

Figure 13C.9 As this figure shows, adults tended to switch much more than children; in 

addition, children tended to switch more in SS2 than SS4 and SS6, whereas adults tended 

to switch more in SS2 and SS4 than in SS6. I analyzed these data in an ANOVA with Set 

Size (2, 4, 6) as a within-subjects factor and Age (3 years, 4 years, 5 years, adult) as a 

between-subjects factor. This analysis revealed significant main effects of Set Size (F2, 382 

= 19.59, p < .001) and Age (F3, 191 = 44.86, p < .001). Follow-up Tukey HSD tests (p < 

.05) showed that the number of switches were higher in SS2 than in SS4 and SS6; 

switches in SS4 and SS6 did not differ from each other. As can be seen in Figure 13C, 

this difference across set sizes is driven primarily by children’s pattern of performance; 

for adults, switches were comparable across SS2 and SS4, but lower in SS6. Additional 

follow-up tests showed that adults switched between displays more than 3-, 4-, or 5-year-

olds did, and the number of switches did not differ across the child age groups. As with 

change-preference scores, the difference in switches across set sizes may be related to 

                                                 
9 To ensure that the different number of switches across set sizes and ages was not driven by the 
total amount of looking time, I also normalized these values by dividing the number of switches 
on each trial by the looking time on that trial. Analyses of these results were identical to those 
reported here, suggesting that the number of switches and the rate of switching are comparable. 
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capacity estimates in change detection; this possibility is explored further in the 

comparisons across tasks at the end of this chapter. 

Discussion 

Children and adults showed change-preference scores significantly above chance 

for all set sizes tested. This suggests that, in this task, participants have a capacity of at 

least 6 items. Analyses showed no developmental difference in preference scores, 

although adults looked longer at the displays and switched between displays more often. 

Interestingly, the only significant differences found across set sizes were between SS2 

and SS4—roughly what one might expect capacity in change detection to be based on 

data from Riggs et al. (2006). Both change-preference and the number of switches were 

highest in SS2, suggesting a possible link between capacity in change detection and 

performance in this task. I return to this issue in the final section of this chapter when 

comparing performance across tasks. 

One particularly important finding from this experiment is the comparison 

between children and the infants tested by Ross-Sheehy et al. (2003). In that study, 10-

month-old infants showed a preference at SS4 but not at SS6, suggesting an adult-like 

capacity of approximately 4 items. In the current experiment, though, children and adults 

showed a higher capacity of at least 6 items. This suggests that capacity as measured by 

preferential looking does increase between 10 months and 3.5 years of age. It remains for 

future studies to explore this developmental transition further—that is, how performance 

changes for intermediate ages—as well as testing the upper limits of capacity in this task 

with older children and adults. The current study could not differentiate capacity higher 

than 6 items because larger set sizes were not tested here. 

Higher set sizes were not tested in this experiment for three reasons. First, higher 

set sizes have not been tested in infancy, and thus there are no existing results to serve as 

comparison. Second, only nine colors have been tested in this task; if set size was 
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increased to, for example, eight items, there would always be at least seven colors that 

matched across the two displays. It seems likely that this much similarity across displays 

would alter results relative to the smaller set sizes that have been tested. Although more 

colors could be included, it is possible that memory performance would differ for 

different colors (e.g., if the colors were more similar to one another, see Johnson, 

Spencer, Luck, & Schöner, in press-a). Again, since other colors have not been tested 

with infants, there would be no existing results for comparison. Lastly, increasing the 

number of items in each display would require decreasing the sizes of each square and/or 

increasing the spatial distribution of the stimuli. The effect of shrinking the stimuli is 

untested, and therefore may lead to unexpected changes in results. Increasing the spatial 

distribution of the stimuli would require more fixations per display in order to encode all 

of the stimuli. Although this would probably not affect adults’ performance, it is possible 

that children could have a harder time integrating across fixations and associating the 

stimuli with the correct display. Future research may address some of these limitations in 

order to extend this task to higher set sizes. 

Experiment 2: Color Change Detection 

To allow for comparisons across tasks, a subset of the participants from 

Experiment 1 also participated in a modified version of the color change detection task. 

By testing the same participants in both tasks, I can directly compare capacity estimates 

across the preferential looking and change detection tasks to look for correlations in 

performance. 

Method 

Participants. A subset of the participants from Experiment 1 also participated in 

this experiment; Table 5 shows the distribution of participants across experiments. Forty-

two children completed this task: 14 three-year-olds (M age = 3 years, 4.68 months; SD = 

2.35 months), 14 four-year-olds (M age = 4 years, 2.56 months; SD = 1.77 months), 14 
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five-year-olds10 (M age = 5 years, 0.36 months; SD = 0.78 months). An additional 19 

children were excluded from analyses for the following reasons: 8 children did not 

understand the task (7 three-year-olds, 1 five-year-old); 9 chose to end early (4 three-

year-olds, 5 five-year-olds); 1 experimenter error (three-year-old); and 1 equipment 

failure (three-year-old). Fourteen adults from Experiment 1 also participated in this 

experiment (M age = 24 years, 0.91 months; SD = 4.67 years). All participants reported 

normal or corrected-to-normal vision and no history of color-blindness. 

Apparatus. The change detection task was explained to children using flashcards 

(3” x 3”) that showed SS1, SS2, and SS3. The task was then completed on an 18” 

Macintosh computer monitor, with the child seated approximately 24-28” from the 

screen. The experimenter entered the child’s response on a keyboard out of the view of 

the child. In contrast with the standard version of this task, the items were presented 

within a rectangular frame to facilitate the description as a card-matching game (see 

Figure 14). The background of the computer screen was black, and the frame was a 5.75” 

tall x 4.75” wide gray rectangle. The position of the “cards” on each trial alternated from 

left to right. This helped reduce interference across trials. Stimuli were the same 1” x 1” 

colored squares used by Vogel et al. (2001); colors included red, green, blue, yellow, 

cyan, violet, black, and white (see Table 3 for RGB values). Colors were selected 

randomly on each trial with the constraint that a color could not appear twice within a 

single array. Stimuli could appear at any of five equally-spaced positions in a 3” diameter 

circle around the center of the frame. For SS2-4, the stimuli appeared in neighboring 

positions; all five positions were filled for SS5. For each set size, the positions were 

                                                 
10 An additional group of 5-year-olds participated in a control condition to replicate the exact 
method used by Riggs et al. (2006); see Appendix for details. 
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chosen randomly for the first trial, but remained constant across the 12 trials to that set 

size. 

Procedure. After completing the preferential looking task, children took a short 

break before starting the change detection task to ensure that fatigue would not impair 

performance. Once they were seated in the change detection room, the task was described 

as a matching game in which they had to help a teddy bear find cards that matched. The 

experimenter then demonstrated the task using flashcards for training. Flashcards were 

placed on either the right or left side (alternating across trials) of a large sheet of 

cardstock in the experimenter’s lap. The first card was shown for approximately 2 s, and 

the child was instructed to “Look at the picture and remember the colors”. The card was 

then removed and after a brief delay, the second card for the trial was shown in the same 

location. The experimenter then asked the child if the two cards matched. After the child 

responded, the experimenter placed both cards side-by-side and praised or corrected the 

child as needed. For all children, the flashcard trials were presented in the same order: 

SS1 No Change, SS1 Change, SS2 Change, SS2 No Change, SS3 Change, SS3 No 

Change. 

Once the participant understood the task, the experimenter began the 

computerized version of the task. The first block of trials were practice, with the sample 

array presented for 2 s and a delay of 900 ms. The test array remained visible until the 

response was entered. Children responded verbally, and the experimenter entered the 

response on a keyboard. When the response was entered, a chime played if the response 

was correct. This positive feedback was included to help children stay motivated. If 

children seemed fatigued, they were offered a break in between set size blocks.  

Adults completed the same task as children, with three exceptions. First, rather 

than completing the flashcard trials, adults were simply shown examples of the trials 

during the descriptions. Second, because the longer sample array may encourage verbal 

recoding and/or rehearsal in adults, a verbal load was added. At the beginning of each 
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block, a 3-digit number appeared on the computer screen, and adults were instructed to 

repeat this number throughout all of the trials for that block. The verbal load was not 

included for children because previous research suggests that children this young do not 

spontaneously verbally recode or rehearse visual stimuli (Pickering, 2001). Third, adults 

entered their response on the keyboard themselves, either holding the keyboard in their 

lap or placing it on the desk below the computer monitor in front of them. The a key 

corresponded to a no change response and the l key to a change response; these keys 

were marked with stickers to help participants remember the correspondence.  

The practice block included eight trials in random order: four trials to SS1 and 

four trials to SS2 (half of the trials were Change trials, half were No Change trials). 

Between each block of trials, the child was offered a short break. The order of test blocks 

was semi-randomly assigned (see Riggs, McTaggart, Simpson, & Freeman, 2006), such 

that the first two blocks were either SS1 or SS2; for 3- and 4-year-olds, the third block 

was always SS3; for 5-year-olds and adults, SS3-5 were randomly ordered across blocks 

3-5. A different order was used for younger children because they often chose not to 

complete SS4 and 5; these high-SS blocks were difficult for all children, and young 

children tended to become discouraged as their performance declined. Each block of test 

trials included six Change and six No Change trials in random order. For 5-year-olds, the 

duration of the sample array on test trials was shortened to 500 ms, to be comparable with 

previous studies (Riggs et al., 2006 see Appendix for direct comparison). The total 

duration of the task was approximately 20-30 minutes. 

Results 

Participants’ responses were classified as correct rejections, hits, misses, and false 

alarms. Figure 15 shows the distributions of these response types for each age group 

separately. Note that, as in Figure 9A, correct rejections and false alarms sum to 1.0 (all 

No Change trials) and hits and misses sum to 1.0 (all Change trials). As this figure shows, 
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correct rejections and hits (i.e., correct responses) were the most common responses 

across ages and set sizes. In addition, performance generally decreased (i.e., errors 

increased) with set size, especially for children.  

For each set size, three measures were computed from participants’ responses: 

accuracy (A’), response criterion bias (β), and capacity. Note that, although most 5-year-

olds and all adults completed SS4 and SS5, many 3- and 4-year-old did not due to 

difficulty keeping children motivated to complete blocks with harder trials; therefore, I 

analyzed performance across SS1-3 only. For each participant, however, I included data 

from all completed set sizes to compute the maximum capacity estimate (described 

below). 

Accuracy (A’). Accuracy was calculated as follows (Aaronson & Watts, 1987): 

If H ≥ FA: A’ = ½ + (H - FA) * (1 + H - FA) / 4H * (1 - FA) 

If H < FA: A’ = ½ - (FA - H) * (1 + FA - H) / 4FA * (1 - H) 

An accuracy score of 1 indicates perfect performance, and a score of 0.5 indicates chance 

performance. This measure was chosen because, like d’, it is affected differentially by 

errors on change versus no change trials, but unlike d’ it allows for cases in which the 

false alarm rate exceeds the hit rate (as was the case for some children) and follows a 

more intuitive range (similar to percent correct). Accuracy scores were computed 

separately for each set size block for each participant. Mean accuracy scores across set 

sizes for each age are shown in Figure 16A; for comparison, percent correct is shown in 

Figure 16B. As can be seen, accuracy followed similar patterns to percent correct; 

analyses reported below did not differ for accuracy versus percent correct, so only 

accuracy results are reported.  

As Figure 16A shows, accuracy was highest for adults and lowest for 3-year-olds, 

and decreased across set size for children. An ANOVA with Set Size (1, 2, 3) as a within-

subjects factor and Age (3 years, 4 years, 5 years, adult) as a between-subjects factor 
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revealed significant main effects of Set Size (F2, 104 = 41.35, p < .001) and Age (F3, 52 = 

17.71, p < .001), which were subsumed by a significant Set Size x Age interaction (F6, 104 

= 5.75, p < .001). Tests of simple effects for each Age group separately revealed 

significant Set Size main effects for 3-year-olds (F2, 26 = 12.43, p < .001), 4-year-olds (F2, 

26 = 21.59, p < .001), and 5-year-olds (F2, 26 = 14.69, p < .001), but not for adults. For 

each group of children, follow-up Tukey HSD tests (p < .05) showed that accuracy was 

lower in SS3 than in SS1 and SS2, although SS1 and SS2 did not differ from each other. 

Additional tests of simple effects separately for each Set Size showed significant Age 

main effects at all set sizes (SS1, F3, 52 = 3.90, p< .05; SS2, F3, 52 = 9.07, p < .001; SS3, 

F3, 52 = 28.92, p < .001). Follow-up Tukey HSD tests showed that adults’ accuracy was 

higher than only 3-year-olds’ in SS1, but higher than all children’s accuracy in SS2 and 

SS3; accuracy did not differ across children in any set size. Thus, the Set Size by Age 

interaction is largely driven by a different pattern over Set Sizes for children than adults, 

as well as a divergence of children from adults at higher Set Sizes. 

Response Criterion Bias (β). Response criterion bias was calculated as follows 

(e.g., Cowan, Naveh-Benjamin, Kilb, & Saults, 2006; see also, Snodgrass & Corwin, 

1988): 

β = -.5 * [z(proportion hits) + z(proportion false alarms)] 

Scores range from -2.33 to 2.33, with zero reflecting no bias (including perfect 

performance), negative scores indicating a tendency to respond change and positive 

scores indicate a tendency to respond no change. Response criterion bias scores were 

computed separately for each set size block for each participant.11 These scores are shown 

in Figure 17A; as this figure shows, bias tended to increase over set size, and only 

                                                 
11 Because z-scores can not be computed on proportion values of 0 or 1, these scores were 
replaced with 0.01 and 0.99, respectively. 
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differed across ages at higher set sizes. An ANOVA with Set Size (1, 2, 3) as a within-

subjects factor and Age (3 years, 4 years, 5 years, adult) as a between-subjects factor 

revealed no significant effects. Because the figure suggests that bias differed between 5-

year-olds and adults in SS4 and SS5, I ran an additional ANOVA including only these 

age groups across all five set sizes; this analysis also revealed no significant effects. 

Thus, the apparent differences in bias across set sizes were not statistically robust. 

In general, when these scores are reported in change detection tasks, they are 

averaged across set sizes and participants to arrive at mean scores for each experimental 

group. Inspection of children’s data, however, showed notable individual differences in 

response criterion bias, as well as a tendency for bias to change over set sizes. Because 

the bias score can take on negative or positive values, it is possible that a mean bias of 

zero may result from two different patterns of bias across blocks that averaged out to 

zero. To achieve a more complete picture of response criterion bias across set sizes and 

participants, I chose to categorize participants’ scores for each set size into one of three 

bias groups: “change bias” (β < -0.7); “no change bias” (β > 0.7); or “unbiased” (-0.7 < β 

< 0.7). Note that I chose these category boundaries such that the “unbiased” category 

includes participants who had the same number of change and no change responses, or 

that the number of each response differed by only two (e.g., five change responses and 

seven no change responses; this would be the case in a block where a participant missed 

only one trial). The numbers of participants falling into these categories are shown in 

Figure 17B, separated by age and set size. As this figure shows, all adults fell into the no 

bias category. In addition, children tended to show no bias in the smaller set sizes. As set 

size increased, however, more children showed bias, especially no change biases. Thus, 

although the magnitude of biases were too small to cause large enough differences to 

yield significant effects in the ANOVA, it is clear that there are changes in response 

biases over development and set sizes.  
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Capacity Estimates. Figure 18 shows capacity estimates across set sizes (bars) 

separately for each age group; note that capacity can, at maximum, equal the set size in 

each block. Because of this limit on capacity estimates, it is not reasonable to analyze 

these data across set sizes. Moreover, calculating an average capacity estimate across 

blocks would result in an artificially low number by including set sizes below capacity. 

To avoid this limitation, I chose to use each participant’s highest estimate across set size 

blocks (see Olsson & Poom, 2005). Mean “maximum” capacity estimates, separated by 

age group, are also shown in Figure 18 (line). As can be seen in this figure, capacity 

estimates tend to be similar across set sizes that are near or beyond capacity for that age. 

For example, 3-year-olds show comparable average capacity estimates for SS2 and SS3, 

and the maximum estimate for this age group is approximately 2 items; similarly, average 

capacity estimates for 5-year-olds seem to peak around SS3, which corresponds to the 

maximum estimate of just under 3 items. Adults, on the other hand, showed near-ceiling 

performance in SS1-SS4, with average capacity estimates of about 1-4 items 

(respectively); in SS5, however, the average estimate drops below ceiling and is just over 

4 items, which corresponds to the maximum estimate of approximately 4.5 items. 

I analyzed mean maximum capacity estimates in a one-way ANOVA with Age (3 

years, 4 years, 5 years, adult) as a between-subjects factor, revealing a significant main 

effect (F2, 30 = 54.81, p < .001). Follow-up Tukey HSD tests (p < .05) showed capacity 

did not differ across 3- and 4-year-olds, but increased significantly for 5-year-olds and 

again for adults. Thus, as Figure 18 shows, capacity generally increased between 3 and 5 

years and into adulthood. 

Discussion 

Accuracy scores and capacity estimates showed that change detection 

performance improved significantly over development. In addition, response biases 

suggest that most participants were unbiased in their responses, but that children were 

 



www.manaraa.com

84 

more likely to show bias than adults, especially at higher set sizes. A key result from this 

experiment was the increase in maximum capacity estimates over development: 

children’s capacity increased from 2 to 3 items between the ages of 3 and 5 years and 

adults showed capacity of approximately 4.5 items.12 In all of these cases, capacity 

estimates from change detection were lower than the 6 items estimated from preferential 

looking, supporting the difference across tasks predicted by the DFT. Note that this 

difference across tasks cannot be driven by underestimation of capacity from the change 

detection task—even adults’ performance dropped from ceiling when set size exceeded 

capacity (i.e., in SS5). Moreover, by using the maximum estimate of capacity across set 

sizes, the capacity estimate reflects each participant’s best performance across blocks. 

Experiment 3: Shape Change Detection 

A second subset of the participants from Experiment 1 (see Table 5) participated 

in a shape change detection task. The goal of this experiment was to provide a second test 

of the predicted differences across preferential looking and change detection, and to see if 

the capacity limits found in Experiment 2 are specific to color, or if similar patterns will 

be found in memory for other visual features. Research with adults has shown small but 

reliable differences across stimulus dimensions; in particular, capacity tends to be slightly 

lower for shapes than for colors (e.g., Wheeler & Treisman, 2002). Thus, results may be 

lower in this experiment than in Experiment 2. In addition, comparisons across tasks 

between this experiment and capacity for preferential looking with colors (Experiment 1) 

will test whether performance is separable across tasks, or if there is a common source of 

variance across visual feature dimensions.  

                                                 
12 The estimates derived here for 5-year-olds are higher than those reported by Riggs et al. (2006); 
I discuss possible sources of this difference in the control condition for this experiment in the 
Appendix. 
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Method 

Participants. Forty-two children from Experiment 1 also participated in this 

experiment: 14 three-year-olds (M age = 3 years, 6.39 months; SD = 1.22 months), 14 

four-year-olds (M age = 4 years, 3.93 months; SD = 0.61 months), 14 five-year-olds13 (M 

age = 5 years, 2.21 months; SD = 2.09 months). An additional 10 children were excluded 

from analyses for the following reasons: 7 children did not understand the task (4 three-

year-olds, 3 four-year-olds); 2 chose to end early (three-year-olds); and 1 experimenter 

error (three-year-old). Fifteen adults from Experiment 1 also participated in this 

experiment (M age = 21 years, 4.30 months; SD = 2.90 years). All participants reported 

normal or corrected-to-normal vision and reported no history of color-blindness. 

Apparatus. The apparatus was identical to that used in Experiment 2 with one 

exception: rather than colored squares, the stimuli were white shapes (Figure 19). 

Procedure. The procedure was identical to that used in Experiment 2 with one 

exception: the sample array was presented for 2 s for all children (rather than only 500 ms 

for 5-year-olds). The increased presentation length was to allow children time to encode 

the more complex feature of shape (compared to color).  

Results 

As in Experiment 2, participants’ responses were classified as correct rejections, 

hits, misses, and false alarms. Figure 20 shows the distributions of these response types 

for each age group separately. Note that, as in Figure 9A, correct rejections and false 

alarms sum to 1.0 (all No Change trials) and hits and misses sum to 1.0 (all Change 

trials). As this figure shows, correct rejections and hits (i.e., correct responses) were the 

                                                 
13 A second group of 5-year-olds who did not participate in Experiment 1 also participated in this 
task, to ensure that completing the preferential looking task before the change detection task did 
not impair change-detection performance. Details of this condition can be found in the Appendix. 
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most common responses across ages and set sizes. In addition, performance generally 

decreased (i.e., errors increased) with set size, especially for children. Relative to 

Experiment 2, performance is slightly lower, as has been suggested by adult studies 

comparing memory for shapes and colors (e.g., Wheeler & Treisman, 2002). One 

particularly striking difference across experiments is in 5-year-olds’ performance in SS3: 

in Experiment 2, their performance was quite high and fairly similar across trial types 

(i.e., correct rejections compared to hits); in the current experiment, however, 

performance was relatively low for change trials (i.e., hits). Because hits figure 

prominently into capacity estimates, this suggests that 5-year-olds’ capacity estimates 

will be notably lower in this experiment. Moreover, this difference across trial types 

should be reflected in more no change response biases for this age group. 

For each set size, three measures were computed from participants’ responses: 

accuracy (A’), response criterion bias (β), and capacity. Note that, as in Experiment 2, 

many 3- and 4-year-old did not complete SS4 and SS5 due to difficulty keeping children 

motivated to complete blocks with harder trials; therefore, I analyzed accuracy and 

response criterion bias across SS1-SS3 only. For each participant, however, I included 

data from all completed set sizes to compute capacity estimates (described below). 

Accuracy (A’). Accuracy was computed as in Experiment 2. Figure 21 shows 

mean accuracy scores (A) and percent correct (B) across set sizes separately for each age 

group. As in Experiment 2, both showed similar patterns, so only accuracy results are 

reported here. As can be seen in Figure 21, accuracy was again highest for adults and 

lowest for 3-year-olds, and generally decreased across set size. An ANOVA with Set Size 

(1, 2, 3) as a within-subjects factor and Age (3 years, 4 years, 5 years, adult) as a 

between-subjects factor revealed significant main effects of Set Size (F2, 106 = 92.97, p< 

.001) and Age (F3, 53 = 46.80, p < .001), which were subsumed by a significant Set Size x 

Age interaction (F6, 106  = 4.31, p < .01). Tests of simple effects for each age group 

showed a significant Set Size main effect for each age (3-year-olds, F2, 26 = 31.62, p < 
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.001; 4-year-olds, F2, 26 = 24.16, p < .001; 5-year-olds, F2, 26 = 33.26, p < .001; adults, F2, 

28 = 8.48, p < .01). Follow-up Tukey HSD tests (p < .05) revealed different patterns 

across the age groups. For 3-year-olds, accuracy in SS1 was higher than in SS2 and SS3, 

while it did not differ between SS2 and SS3. For 4-year-olds, accuracy decreased 

significantly from SS1 to SS2 and from SS2 to SS3. For 5-year-olds and adults, accuracy 

did not differ between SS1 and SS2, but both were higher than SS3.  

Additional tests of simple effects separately for each Set Size showed significant 

Age main effects at all set sizes (SS1, F3, 53 = 4.05, p< .05; SS2, F3, 53 = 21.33, p < .001; 

SS3, F3, 53 = 39.54, p < .001). Follow-up Tukey HSD tests showed that adults’ accuracy 

was higher than 3- and 4-year-olds’ in SS1, but higher than all children’s accuracy in SS2 

and SS3; accuracy only differed across children in SS2, where 5-year-olds scored better 

than 3-year-olds. Thus, the Set Size by Age interaction was driven by different patterns of 

Set Size effects across the different age groups. 

Response Criterion Bias (β). Response criterion bias was calculated as in 

Experiment 2 for each set size for each participant, and then analyzed as in Experiment 2. 

Figure 22A shows mean response criterion bias across set sizes separately for each age. 

As this figure shows, biases were larger than in Experiment 2, and tended to increase 

with set size. Moreover, adults tended to show smaller biases than children. I analyzed 

these scores in an ANOVA with Set Size (1, 2, 3) as a within-subjects factor and Age (3 

years, 4 years, 5 years, adult) as a between-subjects factor. This analysis revealed 

significant main effects of Set Size (F2, 106 = 8.99, p < .001) and Age (F3, 53 = 7.26, p < 

.001), which were subsumed by a significant Set Size x Age interaction (F6, 106 = 3.13, p < 

.01). Tests of simple effects on each age group separately showed significant main effects 

of Set Size at both 4 years (F2, 26 = 3.48, p < .05) and 5 years (F2, 26 = 10.21, p < .01). In 

both cases, bias increased over set size. Thus, the interaction was driven by changes over 

set size for 4- and 5-year-olds, but not for 3-year-olds and adults. In addition, follow-up 

Tukey HSD tests (p < .05) on the overall Age main effect showed that mean bias differed 
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significantly between all children and adults, as well as between 3 and 4 years and 

between 4 and 5 years. Overall, 4-year-olds had the highest mean bias scores, followed 

by 5-year-olds, adults, and 3-year-olds. This suggests that 4- and 5-year-olds showed 

mostly no change bias (as suggested by Figure 20), which decreased over development; 

3-year-olds, on the other hand, may have shown more change bias. 

To investigate these biases further, I again categorized participants as showing 

“change bias”, “no change bias”, or “unbiased”. The number of participants falling into 

these categories is shown in Figure 22B. As this figure shows, most participants were 

unbiased, especially for smaller set sizes (although more showed bias overall compared 

to Experiment 2). For the larger set-sizes, the number of no change biases increased, 

although 3-year-olds tended to show more change biases. This figure confirms the pattern 

suggested by the overall ANOVA presented above.  

Capacity Estimates. Figure 23 shows capacity estimates across set sizes (bars) 

separately for each age group; recall that capacity can, at maximum, equal the set size in 

each block. As in Experiment 2, I also computed a “maximum” capacity for each 

participant; the mean maximum capacity estimates are also shown in Figure 23 (line). As 

this figure shows, capacity estimates tend to be similar across set sizes that are near or 

beyond capacity for that age. Specifically, children showed similar average capacity 

estimates for SS2 and up, and the maximum estimates for each of these age groups were 

approximately 2 items. Capacity estimates for adults, on the other hand, did not drop 

from ceiling until SS4 and SS5, and their maximum estimate was approximately 4 items. 

I analyzed mean maximum capacity estimates in a one-way ANOVA with Age (3 

years, 4 years, 5 years, adult) as a between-subjects factor, revealing a significant main 

effect (F2, 30 = 4.87, p < .05). Follow-up Tukey HSD tests (p < .05) showed capacity did 

not differ among children, but adults’ capacity was significantly higher than each of the 

other age groups. Thus, the similar estimates of capacity between 3 and 5 years shown in 

Figure 23 were not statistically different, although the higher capacity for adults was. 
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Discussion  

As in Experiment 2, accuracy scores showed that change detection performance 

increased over development, although capacity estimates did not reflect this 

improvement. As described above, this is likely due to the fact that performance on 

change trials (i.e., hits) was considerably lower than in Experiment 2. In addition, 

responses biases suggest that participants showed more bias relative to Experiment 2, 

especially for 4-year-olds, who showed change biases that increased over set size. In both 

experiments, however, children tended to show more bias than adults. A key finding from 

this experiment is again the maximum capacity estimates: children’s capacity increased 

from 1.75 to 2.5 items between the ages of 3 and 5 years and adults showed capacity of 

approximately 4 items. In all of these cases, capacity estimates from change detection 

were again lower than the 6 items estimated from preferential looking, supporting the 

difference across tasks predicted by the DFT. Note that these capacity estimates were also 

slightly lower than those derived in Experiment 2, suggesting that there may be 

differences in capacity for different types of visual stimuli. In general, children seemed to 

find memory for shapes harder, presumably because the stimuli are more complex than 

colored squares. Still, memory capacity for shapes and colors could be related, as they are 

both part of the VWM system. 

Comparisons across Tasks 

Experiments 1-3 confirmed the first two predictions of the DFT account of VWM 

capacity: children and adults showed capacity estimates of 6 items in preferential 

looking, which is higher than infants show in this task, as well as the commonly accepted 

adult-like capacity of 3-4 items; these capacity estimates were also higher than the 

capacity estimates derived from the change detection task for the same individuals. The 

third prediction of the DFT is that performance in both tasks depends on the same 
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underlying VWM system. This prediction is tested in a multiple regression analysis 

across tasks for all participants who completed both tasks.  

Method 

Participants. The 118 children and adults who participated in both preferential 

looking and change detection (across experiments) were included in these analyses (see 

Table 5): 27 three-year-olds (M age = 3 years, 5.47 months, SD = 2.13 months), 28 four-

year-olds (M age = 4 years, 3.25 months, SD = 1.47 months), 35 five-year-olds (M age = 

5 years, 1.03 months, SD = 1.65 months; note that this includes the control condition for 

Experiment 2), and 27 adults (M age = 22 years, 3.88 months, SD = 3.96 years). To 

ensure that there were no differences between these participants and those who were 

included only in Experiment 1, I compared all performance measures from Experiment 1 

across these two groups. In all cases, this comparison did not reach statistical significance 

(ps > 0.15). Thus, participants included in these analyses did not differ from those who 

are not included. 

Variable Selection. The primary measure of interest from change detection is 

capacity; as such, the maximum capacity estimate for each individual was the dependent 

measure used in these analyses. In the preferential looking task, however, there is no 

direct calculation of capacity. Rather, change preference score have typically been used 

to infer capacity; because there is a separate score for each set size, all three scores were 

included as predictors in this analysis. Moreover, as described in Chapter 2, the DFT 

suggests that the number of switches in looking between the two displays in preferential 

looking can provide an index of the underlying working memory representations, and 

thus should also be related to capacity. As with change preference score, each individual 

contributed three switch scores (one for each set size), and all were included as 

predictors. Finally, because capacity in change detection clearly varied across age groups 

(see Figures 17 and 22), I included age as a predictor as well. Thus, in this analysis I 
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tested which of the following variables predicted change detection capacity: age; change 

preference scores for SS2, SS4, and SS6; and switches for SS2, SS4, and SS6. 

Results and Discussion 

Simple correlations among these factors are shown in Table 6. Change detection 

capacity was significantly correlated with most factors, with the strongest effect of age, 

followed by switches in all three set sizes. Note that the correlation between capacity and 

change preference in SS2 is one of the first indications from a looking task that the 

magnitude of a preference score may be an indication of the underlying memory 

representation. This is further supported by correlations among the preference scores for 

different set sizes. Given the relative weakness of these correlations, however, these 

findings are merely suggestive. 

I conducted a stepwise multiple regression analysis to determine whether 

characteristics of performance in preferential looking were predictive of capacity in 

change detection. Given that capacity clearly increased with age, I selected age as the 

first predictor in this analysis. Note that, although age was a categorical variable in the 

analyses of Experiments 1-3, I converted it to a continuous variable for this analysis to 

capture the full range of ages in each group. Because I had no a priori expectations for 

the ordering of the remaining variables, I conducted two regression analyses to test both 

orders. 

As described above and shown in Table 6, age accounted for a significant 

proportion of the variance in change detection capacity (standardized β = 0.75, R2 = 0.55, 

F1,116
 = 144.62, p < .001). For the remaining variables, the order of the variables did not 

impact the results: in both cases, only SS4 switches significantly accounted for additional 

variance. The combined model of age and SS4 switches provided a significantly better fit 

than age alone (standardized β  = 0.15, R2 = .19, F change1, 115 = 4.24, p < .05; for age, 

standardized β = 0.64, adjusted R2 = 0.56). Recall from Experiment 1 that the analyses of 
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switches revealed significant main effects of both set size and age, driven by higher 

switches in SS2 and for adults. As Figure 13C showed, however, children and adults 

showed different patterns over set size: children’s switches dropped between SS2 and 

SS4, whereas adults’ switches dropped between SS4 and SS6. Note that these drops in 

switches roughly correspond to the mean change detection capacity estimates for the 

different age groups (2-3 items for children, 4.5 items for adults). Thus, switches in 

preferential looking appear to provide an index of change detection capacity.  

This correlation across tasks strongly supports the DFT proposal that both tasks 

tap the same working memory system, even though they produce different capacity 

estimates. Indeed, the results of Experiments 1-3 alone do not suggest that such 

correlations would exist; there were no developmental changes in preference scores (and 

therefore capacity estimates) in Experiment 1. This could have been interpreted as 

support for the proposal that this task measures a different type of memory than change 

detection (as had been proposed by Riggs et al., 2006). Instead, by implementing both 

tasks within a single unified model, I was able to predict how the different patterns of 

performance across tasks could result from the same underlying system, and that capacity 

in change detection could be predicted by preferential looking performance. Moreover, 

the fact that switches provide an index of the underlying memory representations further 

supports the DFT account of how looking behavior relates to the formation of working 

memory in a task. I explore this relationship further in the next chapter, where I 

quantitatively fit the data from both tasks over development. 
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Figure 13. Preferential looking data separated by age and set size: (A) total looking time 
in seconds; (B) change-preference scores (dashed line indicates chance = 0.50); (C) 
number of switches between displays. Error bars show standard error.  
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Figure 14. Sample trials in Experiment 2.  
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Figure 15. Response distributions across set sizes for each age group in Experiment 2.  
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Figure 16. Performance in Experiment 2 across Set Sizes, separately for each Age group: 
(A) mean accuracy and (B) mean percent correct. Note that chance equals 0.5 for 
accuracy and 50% for percent correct. Error bars show standard error.  
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Figure 17. Response criterion bias in Experiment 2: (A) mean scores across Set Sizes, 
separated by Age group; (B) number of participants showing each category of bias. Error 
bars show standard error.  
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Figure 18. Mean capacity estimates from Experiment 2 across Set Sizes (bars) and mean 
maximum capacity for each participant (line), separately for each Age group. Error bars 
show standard error.  
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Figure 19. Shape stimuli from Experiment 3.  

14mm (on computer screen) 
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Figure 20. Response distributions across set sizes for each age group in Experiment 3.  
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Figure 21. Performance in Experiment 3 across Set Sizes, separately for each Age group: 
(A) mean accuracy and (B) mean percent correct. Note that chance equals 0.5 for 
accuracy and 50% for percent correct. Error bars show standard error.  
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Figure 22. Response criterion bias in Experiment 3: (A) mean scores across Set Sizes, 
separated by Age group; (B) number of participants showing each category of bias. Error 
bars show standard error.  
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Figure 23. Mean capacity estimates from Experiment 3 across Set Sizes (bars) and mean 
maximum capacity for each participant (line), separately for each Age group. Error bars 
show standard error.  
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Table 3 

RGB Values for Stimuli in Experiments 1 and 2 
Color    R   G   B 
black    0   0   0 
blue    0   0 255 
brown  153  51   0 
cyan    0 255 255 
green    0 255   0 
gray  150 150 150 
red  255   0   0 
violet  238 130 238 
white  255 255 255 
yellow  255 255   0 

Note. See Ross-Sheehy et al. (2003) and Vogel et al. (2001) for approximate CIE values. 
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Table 4 

T-Test Comparisons of Change-Preference Scores with Chance (0.50) for Experiment 1 
   Set Size 
Age df       2     4     6 
3 years 55 7.28*** 2.75** 2.80** 
4 years 43 3.46**  2.64* 2.57* 
5 years 54 5.13***  2.57* 2.77** 
Adults 39 5.76*** 4.53*** 3.29**    

Note. * p < .05  ** p < .01  *** p < .001 
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Table 5 

Participants Included in Analyses for Experiments 1, 2, and 3 
     Experiment 
  Total 1 onlya 1 and 2 2 only 1 and 3 3 only 
3 years 57 29 14 0 13 1 
4 years 44 16 14 0 14 0 
5 years 57 19 24b 0 12 2 
Adults 42 13 12 2 15 0 
Total 201 77 64c 2 54c 3 
a These participants were only included in Experiment 1 for the following reasons: 47 were 
enrolled in experiments not reported here (9 3-year-olds, 13 4-year-olds, 12 5-year-olds, 13 
adults); 19 participated in Experiment 2 and 10 in Experiment 3, but were excluded from analyses 
(see Experiment 2 and 3 method sections for details). 

b Of these 5-year-olds, 14 participated in the primary condition Experiment 2 and 10 in the 
control condition (see Appendix). 

c These 118 participants were included in the cross-task analyses. 
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Table 6 

Simple Correlations (R2) for Comparisons across Tasks 

   Variable 

Variable 1 2 3 4 5 6 7 8 

1. Capacity -- 0.74*** 0.36*** 0.53*** 0.35*** 0.17* -0.01 0.03 
2. Age  -- 0.43*** 0.57*** 0.46*** 0.15 0.13 0.06 
3. Switches – SS2   -- 0.65*** 0.60*** -0.13 0.05 -0.04 
4. Switches – SS4    -- 0.66*** 0.05 0.08 -0.05 
5. Switches – SS6     -- 0.11 0.08 -0.10 
6. Preference Score – SS2      -- 0.18* 0.06 
7. Preference Score – SS4       -- 0.25** 
8. Preference Score – SS6        -- 

Note. * p < .05  ** p < .01  *** p < .001 
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CHAPTER 4 

QUANTITATIVE SIMULATIONS OVER DEVELOPMENT 

Experiments 1-3 showed that preferential looking and change detection lead to 

different capacity estimates even when testing the same individuals. In particular, 

capacity estimates were higher in preferential looking (at least 6 items) and did not 

change over development from 3 to 5 years or to adulthood. Capacity estimates in change 

detection, on the other hand, were low for young children (about 2 items) and increased 

over development (about 3 items for older children, just over 4 items for adults). In 

addition, cross-tasks comparisons revealed that SS4 switch rate in preferential looking 

was predictive of capacity in change detection, even after removing variance due to age. 

These results support the first three predictions of the DFT: capacity estimates for older 

children and adults were greater than four items in the preferential looking task; capacity 

estimates for the same participants were substantially lower in change detection; and 

performance across tasks is related over development. This support of the DFT 

predictions suggests that these two tasks do indeed rely on the same underlying VWM 

system. But can the DFT produce this pattern results in both tasks over development? 

This chapter includes quantitative simulations of both tasks testing the fourth prediction 

generated in Chapter 2: development in these tasks can be captured by the unified model 

using the Spatial Precision Hypothesis. 

To test this prediction, I first simulated the data from the change detection task, 

beginning with the parameters used for the simulations in Chapter 2. Next, I simulated 

the data from the preferential looking task using the same developmental parameters. I 

chose to simulate the change detection task first because the parameters follow directly 

from the adult simulations presented in Chapter 2. In addition, this task showed more 

developmental effects with a complex pattern of results across set sizes and trial types 
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(i.e., change versus no change); therefore, these data provide more constraints for the 

model. 

To model the developmental data, I began with the adult parameters and then 

varied model parameters according to the Spatial Precision Hypothesis. Recall that the 

SPH posits that neural interactions become stronger and more precise over development 

(see Chapter 5 for further discussion). Previous work within the DFT framework has used 

the SPH to capture developmental changes in spatial working memory tasks between 

infancy and 6 years. Simulations have shown that small, quantitative changes in neural 

interaction are sufficient for the DFT to reproduce a complex pattern of behavioral 

performance observed across multiple spatial cognitive tasks over development (Schutte 

& Spencer, 2008; Simmering, Schutte, & Spencer, 2008; Simmering & Spencer, 2008). 

The specific changes I implemented are described in detail below. Critically, these 

changes were derived from quantitative simulations from Schutte and Spencer (2008). 

These researchers used the 3-layer architecture described in Chapter 2 and used to model 

change detection performance (see Johnson, Spencer, & Schöner, in press-b; Simmering 

& Spencer, 2008) to capture a complex pattern of changes in spatial memory biases 

between 3 and 5 years. In particular, they increased the strength of locally excitatory 

interactions in perceptual and working memory fields, as well as the strength of lateral 

inhibition from the shared inhibitory layer over development. They also increased the 

strength and precision of inputs to the model over development to capture changes in the 

precision with which stimuli are encoded by early visual processes. As I describe below, 

these same parameter changes can effectively capture the developmental increase in 

capacity reported in Chapter 3 as well as differences in performance across change 

detection and preferential looking tasks.  
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Model Architecture 

The architecture consisted of the five-layer model described in Chapter 2 with the 

response nodes for the change detection task and the fixation system for the preferential 

looking task. Each of the layers in the neural field model contained 541 units. Parameter 

values for the fields are shown in Table 7, for the response nodes in Table 8, and for the 

fixation system in Table 9. The majority of parameters (31 of 48) did not vary across all 

simulations; these values are shown above the dashed lines in Tables 6-8. In particular, 

there were no changes for the following parameters: the timescale for each equation (τu, 

τv, τw, τr, τf, τh, τltmbuild, τltmdecay); the resting levels in each equation (hu, hv, hw, hr, hrest) the 

width of projections within or between layers (σuu, σuv, σvu, σvw, σwu, σwv, σww); the strength 

of excitatory projections between layers (cuw, cvu, cwu); the projections from the nodes to 

the fields (cuc /cwn for change detection, cul /cur for preferential looking); the projection 

from PF to the change node (ccu); the self-excitation of the fixation nodes (cll /crr /caa); the 

slope for the dynamic resting level of the fixation nodes (ah); the constant input to the 

away node (ca); the transient input to all fixation nodes (ctrans); and the long-term memory 

projections (cultm /cwltm). 

The remaining (17) parameters were scaled over development, following our 

previous work with the SPH (Schutte & Spencer, 2008; Schutte, Spencer, & Schöner, 

2003; Simmering et al., 2008; Spencer, Simmering, Schutte, & Schöner, 2007). These 

values are shown below the dashed lines in Tables 7-9; for comparison, the scaling values 

are also shown in Figure 24 (note that only parameters that also varied between 3 and 5 

years are shown in this figure). As this figure shows, most parameters were scaled to 

smaller values for early development, and the increase between 3 and 5 years was 

generally linear. 

To move from the adult parameters to early development (that is, backwards in 

developmental time), I decreased the strength of local excitation (cuu, cww) and the 

strength of lateral inhibition (cuv, kuv, cwv, kwv). The effect of this scaling on WM peaks is 
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shown in Figure 25, with weaker peaks early in development. Next, I decreased the 

strength and precision (i.e., by increasing the width) of input to the fields (ct, σt,) to 

approximate less precise projections from early visual areas. I also increased the direct 

projection into WM relative to the projection into PF (i.e., decreasing the ratio), although 

when coupled with the decreased input strength, this still reduced the overall strength of 

the projections into WM relative to the adult parameters. Lastly, I increased the strength 

of the spatially-correlated noise within the field (cn) to capture the noisier performance of 

young children. All of these changes have been used in previous implementations of the 

SPH (see Schutte & Spencer, 2008), and correspond to changes in the strength of 

connections within and between brain areas postulated by the SPH (discussed in detail in 

Chapter 5). 

 For the decision nodes, I decreased the strength of the self-excitation (ccc /cnn) 

and competition (ccn /cnc) between the nodes, as well as decreasing the strength of the 

projection from WM to the no change node (cnw). The changes in self-excitation and 

competition are conceptually comparable to the changes within the layers. The decreased 

strength of the projection to the same node can be thought of as tuning the system to be 

more sensitive to novelty or to be more input-driven (relative to the adult system). 

Although I implemented this as a decrease in the WM-no change projection, a similar 

affect could be achieved by increasing the PF-change projection.  

For the fixation nodes, I again decreased the inhibition between nodes (clr /cla /crl 

/cla /car /cal). I also scaled the input to the fixation nodes by increasing the strength of the 

projection from PF to the nodes (clu /cru) early in development and decreasing the 

constant input (clk /crk), that is, the input which indicated that something was present on 

the left or right display. As with the changes to the response nodes, this scaling made the 

child system more input-driven relative to the adult system because the activation from 

PF, which largely reflects the details of the featural input at the fixated site, had a 

relatively stronger influence on fixation early in development. Next, I increased the low 
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attractor value (hdown) of the h-dynamics for the nodes, which cause the nodes to return to 

this attractor state more slowly. Lastly, I increased the magnitude of the noise on the 

constant input to the nodes (cn_in). 

Simulation Details 

Simulations were conducted in Matlab 7.4 (Mathworks, Inc.) on a PC with an 

AMD Athlon 2.61 GHz dual-core processor. The dynamic field equations (see Chapter 2) 

were integrated using the Euler method with one time step = 2 ms. For these simulations, 

the model was presented with one to five inputs on each trial, depending on the set size; 

inputs corresponded to different colors selected from a continuous 360° color space (i.e., 

1° in color space = 1.5 units in the model), in which colors were separated by 40° (60 

units). 

Change Detection Trials 

Each simulation trial began with a 200 ms relaxation period that allowed the 

model to reach a stable resting state. This was followed by the 2 s presentation of the 

sample array and a 900 ms delay interval. Next, the test array was presented in which 

either all items matched the sample array (a no change trial) or one item changed to a 

new value (a change trial). As in Experiment 2, the new color value was chosen 

randomly from the remaining colors, and therefore could not match a color currently in 

the display. Shortly after the appearance of the test array (100 time steps or 200 ms later), 

the resting level of the nodes in the response layer was increased and activation was 

projected from PF and WM to the respective decision nodes. This allowed the activation 

of the nodes to build beyond threshold, provided suitably strong input from the 

corresponding field. Because the nodes in the response layer were coupled via strong 
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inhibitory connections, only a single node surpassed threshold on each trial.14 The node 

whose activation reached threshold first, therefore, determined the model’s response. To 

parallel the design of Experiment 2, each “session” for the model included 12 trials (6 

change, 6 no change) in each of the five set sizes, presented in the order 2 – 1 – 3 – 4 – 5. 

Note that, because young children did not complete the larger set sizes, I excluded these 

trials for the “young” simulations. The model was then tested 50 times for each age group 

(equivalent to running 50 participants per age group). 

Preferential Looking Trials 

Again, each simulation trial began with a 200 ms relaxation time that allowed the 

model to reach a stable resting state. Then, transient input was sent to all fixation nodes 

for 150 ms, indicating that something had appeared on the displays. In addition, during 

the presentations of the inputs (on for 500 ms, with 250 ms “blank” delays in between), 

non-specific constant input (with added white noise; see Table 9) was sent to the left and 

right fixation nodes; this corresponded to the appearance and disappearance of stimuli on 

the displays. When one of these nodes pierced threshold, the specific input from that 

display—that is, which colors were presented on that display—was projected to the 

model (strongly into PF and weakly into WM as described in Chapter 2). Input streams 

for each display were constructed following the details of Experiment 1: each consisted 

of two, four, or six colors (depending on set size) that were on for 500 ms with 250 ms 

blank intervals in between. For the No Change display, the colors did not change over the 

                                                 
14 On a small proportion of trials (< 0.01%), the decision system showed a particular type of 
instability: the change node would rise above threshold for approximately 500 time steps (1 s), 
but then activation of this node would drop below threshold. At this point, the no change node 
would rise above threshold for the remainder of the trial (about 500 time steps). In these cases, 
the change response was recorded. This type of instability occurred almost exclusively with the 
child parameters, presumably due to the weaker self-excitation of the decision nodes. 
Behaviorally, this could be interpreted as the model “changing its mind”; interestingly, this is a 
behavior that some young children exhibited in Experiments 2 and 3. 
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course of the 20 s trial; for the Change display, one of the colors, selected randomly, 

would be replaced with another color that was not currently present in that display. Note 

that, as in Experiment 1, it was possible for colors to be repeated across displays. For 

each “session”, the model was presented with six 20-s trials, two at each set size, in 

random order. The model was again tested 50 times for each age group. 

Results and Discussion 

In this section, I describe the results of the simulations in change detection first, 

followed by the result in preferential looking. Within each section, I discuss how the 

model captures children’s and adults’ performance in each task, as well as how 

developmental changes in the model give rise to developmental changes in performance. 

Change Detection 

Figure 26A-D shows the distributions of response types15  for the change detection 

simulations for each “age” (data from Experiment 2 are shown in Figure 26E-H for 

comparison); recall that correct rejections and false alarms sum to 1.0 (all no change 

trials) and hits and misses sum to 1.0 (all change trials). As this figure shows, the results 

were similar to the data from Experiment 2, approximating not only the overall percent 

correct, but also capturing the relative rates of each type of error. Moreover, the 

simulations yielded mean maximum capacity estimates similar to those in Experiment 2:  

1.96 items with the 3 year parameters (1.90 in Experiment 2), 2.59 with the 4 year 

parameters (2.20), 2.91 with the 5 year parameters (2.90), and 4.11 with the adult 

parameters (4.61). Table 10 shows the model responses and the data from Experiment 2 

for comparison; note that I only included correct rejections and hits in this table because 

                                                 
15 For simplicity, I only compare the model’s response distributions directly to the distributions 
from Experiment 2; because the other measures of performance (accuracy, response bias, and 
capacity) are computed directly from these distributions, the fits will be similar across measures. 

 



www.manaraa.com

115 

misses and false alarms are simply the differences of these measures from 1.0, with 

identical standard deviations. 

In evaluating the fit of the model simulations to the data, it is first important to 

note the percentages shown in Table 10 may be misleading due of the small number of 

trials of each type. Because there were only 6 change trials and 6 no change trials, a 

difference of a single trial results in a 16.67% change (i.e., performance drops to 83.33% 

with only one incorrect trial) in hits or correct rejections, respectively. These large jumps 

in percentage based on few trials make it difficult to compare performance rates using 

percent correct. As an alternative, I converted these numbers back to numbers of trials 

(e.g., 100% equals 6 trials, 83.33% equals 5 trials, etc.); now differences between the 

model's performance and the data from Experiment 2 can be evaluated in terms of the 

numbers of trials that differed. Figure 27 shows these values, with the corresponding data 

from Experiment 2. As can be seen in this figure and in Table 10, the model not only 

produced the correct levels of mean performance, but also captured the variability across 

participants. To quantify this fit, I calculating the root mean squared error (RMSE) for 

correct rejections and hits separately for each set size and age group. Thus, I compared a 

total of 34 means and 34 standard deviations between the model and the data. The 

average RMSE across the 34 means was 0.26 (range: 0.00 to 0.97), and the average 

RMSE across the 34 standard deviations was 0.73 (range: 0.00 to 0.73). As these values 

indicate, the fits of the model were quite good, within a single trial of the data for every 

data point. 

To understand how performance was influenced by the developmental changes I 

implemented, I have included some sample simulations with the 3-year-old parameters 

(see Table 8 for details of the parameter changes). Figure 28 shows a sample simulation 

of a SS3 false alarm trial (i.e., a no change trial on which the model responded change) 

using the 3-year-old parameters. When compared to the adult-parameter simulations 

shown in Chapter 2, the WM peaks in this simulation are relatively broad and weak. 
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Because of the weaker interaction profile, the model is not able to maintain all three 

peaks over the delay (see “peak dies” arrow in Figure 28). Thus, when the same colors 

are presented in the test array, the input for the forgotten color produces a self-stabilized 

peak in PF (see circle in Figure 28), leading to a change response. 

In another sample simulation, Figure 29 shows a SS3 miss trial (i.e., a change trial 

on which the model responded no change). Again, the weak interactions prevent the 

model from maintaining all three WM peaks over the delay (see “peak dies” arrow in 

Figure 29). On this trial, however, the forgotten color (-160°, corresponding to black) 

happened by chance to be the one that changed at test. The new color (violet, at -40°) that 

comes in at test is relatively near a color that is being maintained in WM (red, at -80°); 

the slight inhibitory trough caused by this WM peak—along with weak neural 

interactions in PF—is enough to slow down the formation of a self-stabilized peak 

corresponding to the new color in PF (see circle in Figure 29). By the time this peak 

builds in PF (see dashed arrow in Figure 29), however, the no change node has already 

passed threshold due to the activation from the peaks still held in WM. Thus, the model 

responds no change and makes an error. These sample simulations illustrate how changes 

in the interactions in the fields can produce errors for different reasons relative to the 

adult model described in Chapter 2. 

These simulations of the change detection task demonstrate that the DFT can 

generalize from the standard task simulated in Chapter 2 to the slightly modified version 

we tested with adults in Experiment 2, as well as capturing the details of performance 

over development from 3 to 5 years. Furthermore, these results provide strong support for 

the Spatial Precision Hypothesis as a mechanism to drive changes over development 

(discussed in more detail below). As the interaction among neurons was weakened to 

capture early development, the stability of the attractor states in the fields decreased. As a 

result, WM peaks were weaker and less likely to sustain throughout the delay. In 

addition, self-stabilized peaks were less likely to form in PF at test. The combination of 
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these two effects, both resulting from weaker neural interactions, produces the 

appropriate decline in performance on both change and no change trials. Thus, the SPH 

not only provides a specific mechanism for developmental change, but also specifies the 

process by which this change influences performance. 

To understand how memory capacity arises in the DFT across all age groups, I 

calculated the number of peaks present in WM at the end of the delay period on each 

trial; this provides an index of how many peaks the model can stably maintain in memory 

through the delay. Figure 30A shows the mean number of peaks across set sizes for each 

point in development; Figure 30B-E also shows the mean number of peaks separately for 

each response type. As this figure shows, the number of peaks that could be held in WM 

increased over development, with an average of about 3.25 in SS4 for the 3-year-old 

parameters.16 This increased to around 3.5 in SS4 for 4-year-old parameters and 3.85 in 

SS4 for the 5-year-old parameters. For SS5, the 5-year-old parameters average over 4.5 

peaks per trial, and the adult parameters are near ceiling, averaging 4.97 peaks per trial. It 

is interesting to note how the mean number of peaks changes over response type; for all 

ages, the false alarm category has the lowest number of peaks, suggesting that these 

responses are the most likely to result from a failure in capacity (as shown in the 

simulations figures in Chapter 2 as well). After false alarms, hits show the next lowest 

number of mean peaks, further suggesting that correct responses can result from 

imperfect memory of the displays. 

In light of these simulations, what should one conclude about capacity estimates 

in these tasks? As a primary contribution to capacity, the strength of neural interactions 

                                                 
16 Even though there were no comparable data from Experiment 2, I included simulations in SS4 
with the 3 year parameters to ensure that performance remained at reasonable levels. In this set 
size, correct rejections were at 70.67% (SD = 19.79) and hits were at 56.67% (SD = 21.83), 
which fits with the pattern seen across smaller set sizes in this age group, and across set sizes in 
the other age groups. 
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limits the number of items (i.e., peaks) that can be actively maintained at one time. Note, 

however, that the number of peaks does not equal the estimated capacity (see Figure 9 

and related discussion in Chapter 2). This is the sense in which the DFT simulations map 

most closely onto traditional ideas about capacity. However, the DFT account moves 

beyond IP approaches to capacity, as Figure 30 illustrates: failing to hold all of the items 

in memory leads to particular response types (i.e., false alarms) more than others. This 

contrasts with the traditional interpretation of the task, in which misses are considered to 

be indicative of capacity failures. Conceptual or verbal theories can only hypothesize the 

relationship between capacity and responses in this task; by implementing this task in a 

process-based model, we can directly observe the relationship between the items being 

held in memory (i.e., WM peaks) and the model’s response. 

In addition to the number of items in memory, decision factors played a 

considerable role in the change detection simulations, especially over development. For 

example, note that the model held the SS1 item in memory on every trial with the 3-year-

old parameters; however, performance was only around 90% correct. Errors on these 

trials, then, must result from the comparison and response process, not just from failures 

in capacity. Again, this could not be determined conclusively from conceptual theories, 

but is evident when the task is implemented in a process-based model. 

These limitations of the IP account of capacity in change detection are also 

evident in the formula typically used to compute capacity. As Pashler (1988) 

acknowledged, the formula he developed is not equipped to address different sources of 

errors in the task. Moreover, the assumptions underlying this formula (see Chapter 2 for 

discussion) are not supported by the DFT simulations. This formula is derived from 

signal detection theory—the idea that the observer is merely monitoring for a change 

signal, and responds no change in the absence of that signal—which may be the wrong 

way to describe performance in this task. Rather, the decision process is actually about 
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the competition between two signals (one for change and one for no change), and this 

competition contributes significantly to performance. 

To summarize, these simulations showed that the DFT can capture developmental 

changes in change detection performance by implementing the SPH. In addition, analysis 

of how the model performed the task provided insight into the nature of capacity limits, 

as well as how capacity may impact performance on change and no change trials. These 

results suggest the traditional IP approach to understanding capacity may not 

appropriately account for performance in this task. The next critical question for the 

model is to test the consequences of these developmental changes in the second task, 

preferential looking. 

Preferential Looking 

Figure 31A-C shows the mean total looking times, mean change preference 

scores, and mean switches across simulation “age” groups; the data from Experiment 1 

are shown in Figure 31D-F for comparison. As can be seen in this figure, the model was 

able to capture the pattern of data across all three measures, all three set sizes, and all 

four age groups. Because these three behavioral measures in the model could vary 

independently, however, I compare each to data from Experiment 1 in turn.  

Table 11 shows the model total looking times and the corresponding data from 

Experiment 1 for comparison; I again evaluated the model fits by calculating RMSE for 

each set size and age group. Thus, for this measure, I compared 12 means and 12 

standard deviations between the model and the data. The average RMSE across the 

looking time means was 0.42 (range: 0.10 to 0.82), and across the standard deviations 

was 1.52 (range: 0.58 to 1.98). As these values indicated, the fits of the model to the 

mean total looking times were again quite good, within 1 s of the data for each mean. The 

standard deviations were not fit as well in this task as in change detection, with the model 
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showing less variability than the participants. There are a number of reasons this may be 

the case, which I discuss in detail below. 

Change preference scores from the model simulations and Experiment 1 are 

shown in Table 12. I calculated RMSE for each set size and age group, again comparing 

12 means and 12 standard deviations between the model and the data. The average 

RMSE across the preference score means was 0.02 (range: 0.01 to 0.05) and across the 

standard deviations was 0.03 (range: 0.00 to 0.05). Thus, the fits of the model to the 

means and standard deviations for change preference scores were quite good. 

Finally, switches from the model simulations and Experiment 1 are shown in 

Table 13. Again, I calculated RMSE for each set size and age group, to compare 12 

means and 12 standard deviations between the model and the data. The average RMSE 

across the switch means was 0.74 (range: 0.49 to 1.21) and across the standard deviations 

was 1.37 (range: 0.87 to 2.09). As with total looking, the fits of the means were quite 

good, within a single switch for all but 1 of the 12 means. However, the fits for the 

standard deviations were not as good, with the model again showing less variability than 

the participants. 

Importantly, the model was able to capture the general pattern in switches across 

set sizes, with a drop in switching between SS2 and SS4 for children, and between SS4 

and SS6 for adults (see Figure 31C, F). As described in Chapters 2 and 3, this provides an 

indication of capacity in change detection (between 2 and 3 items with the child 

parameters, and just over 4 items with the adult parameters). As with the change 

detection simulations, I will describe a few sample simulations to explore how the model 

is performing this task. 

Figure 32 shows a simulation of a SS2 trial with the 3-year-old parameters. The 

activation of the nodes over the course of the trial is shown in Figure 32A. As this panel 

shows, the model switched between displays 11 times (i.e., there are 12 fixations that 

alternate = 11 switches), a relatively high number for this age group. To illustrate how the 
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underlying memory representation contributed to this pattern of looking, PF and WM are 

shown in Figure 32B-C (recall that in this “overhead” view of the fields, the fuchsia “hot 

spots” indicate peaks). The central point to take from this simulation is that the two peaks 

corresponding to the two colors on the No Change display sustain throughout much of the 

trial (see arrows in Figure 32C). By contrast, peaks associated with the colors from the 

Change display build more transiently; they are not able to sustain for very long. 

Why do some peaks sustain while others do not? At first, this difference is due to 

chance—whichever items are fixated early have an advantage. Once there are self-

sustaining peaks in WM, however, it becomes more difficult for new peaks to build, 

because existing peaks suppress the formation of new peaks via lateral inhibition. To 

illustrate this point, Figure 32D-E shows time slices through PF and WM at a point when 

a new peak is building in WM (see first vertical arrow across the fields). At this point in 

the trial, the model is maintaining fixation to the Change display, and one of the colors 

has just changed to a new value (at -40°). Because this peak is still building, it is not 

contributing as much inhibition back to PF as the peaks being sustained at -120° and 80°. 

This allows a self-stabilized peak in PF at that value (-40°; see circle in Figure 32D-E), 

which maintains fixation to this display. This illustrates one contribution to the 

mechanism behind the change preference: the model continues to fixate the change 

display when values are “new” in WM. 

A second example of the same process is highlighted at the next time slice (see 

second vertical arrow across the fields; Figure 32F-G). In this example, the model is 

stably maintaining the two items from the No Change display (at -160° and 80°) while 

fixating two new colors in the Change display (at -80° and 40°). Over the course of this 

fixation, the WM peaks associated with the new colors begin to build, but much more 

slowly due to competition from the two No Change colors already being held in WM. 

During the time slice shown in Figure 32F-G, the peaks at the new colors have just 

emerged in WM (at -80° and 40°; see Figure 32G), which de-stabilizes one of the old 
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peaks (at 80°; see “dies out” in Figure 32G). This competition between peaks in WM 

arises due to constraints on the capacity of WM in the DFT. 

Figure 32 also illustrates why switching is high for set sizes within the model’s 

capacity: because the model is able to form peaks from both displays relatively quickly 

(albeit, not necessarily simultaneously), activation in PF is quickly inhibited and fixation 

is released. Although switching is high, it is important to emphasize that a change 

preference can still emerge because peaks from the No Change side receive more support 

from traces in LTMWM. Thus, release from fixation is rapid in simulations that switch 

frequently, but there can still be a difference across displays in how quickly the peaks are 

inhibited.  

For contrast, Figure 33 shows a simulation of a SS4 trial with the 3-year-old 

parameters. Note, first, that the model switches infrequently, only four times over the 

course of the trial. As discussed previously, the low number of switches results from the 

limited capacity of WM. To illustrate this, consider the model’s performance during the 

first fixation of the No Change display (red line in Figure 33A). Because the model has a 

limit to how many peaks can be built at one time, the four colors being presented do not 

all form WM peaks at once (see dashed circle in Figure 33C); rather, the peaks build 

sequentially. Once built, these peaks are relatively unstable leading to fluctuations in their 

activation over time, which in turn affects the inhibitory projection sent back to PF. 

Because this projection varies through time, activation in PF is able to repeatedly rise 

above threshold which maintains fixation to this display even though the items are close 

to the self-sustaining state in WM. 

Roughly 8 s into the trial, activation in PF is low enough to release fixation, and 

the model switches to fixate the Change display. Now there is competition between the 

No Change peaks and the new colors coming from this display. A time slice through the 

fields at this point (Figure 33D-E) shows that the two new peaks trying to build at 0° and 

120° (see red circles) are slowed by the other peaks being held in WM (at -160°, 40°, and 
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80°). As a result, activation at these values remains above threshold in PF, maintaining 

fixation to this display. Eventually, however, the WM peaks associated with the new 

colors rise above threshold, and competition causes three of the previous No Change 

peaks to die out (see solid circle in Figure 33C). 

The model’s next fixation is back to the No Change display. Because only one of 

these colors (-160°) is still maintained in WM from the last fixation, the remaining three 

colors must build again (see red circle in Figure 33F-G). Critically, these peaks build 

relatively quickly as a result of input from LTMWM. This, in turn, creates a relatively 

short look to the No Change side which results in a change preference score across the 

20s simulation. Note once again, however, that change preference and switches are not 

isomorphic: the lower number of switches in this simulation are driven by the relatively 

slow build up of peaks in WM due to constraints on capacity, while the change 

preference reflects the fact that this build up—while slow relative to the previous 

simulation—is faster to the No Change display. 

To summarize, as in the change detection simulations, weaker interactions in WM 

limit the number of peaks that can be maintained simultaneously. However, due to the 

more supportive nature of the preferential looking task, the combination of frequent input 

and LTM support allows more peaks to sustain (4 or 5, albeit briefly) than were stably 

maintained during the change detection delay (i.e., 3.5 on average for SS4). As a result, 

performance in preferential looking is not as strongly constrained by the number of peaks 

that can be maintained over delays. A more important factor is how quickly activation in 

PF is suppressed, either by quickly-building peaks, or by peaks sustaining in WM. Over 

development, as interactions strengthen, stability increases and more peaks may be built 

and maintained simultaneously. This in turn leads to faster inhibition, which causes to 

faster switching behaviorally. This type of stability is likely the underlying cause of the 

correlations across tasks revealed in Chapter 3, between switching in preferential looking 

and change detection capacity. 
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Overall Evaluation 

This chapter presented quantitative simulations to test my fourth prediction, that 

implementing the SPH in the unified model will capture developmental changes in both 

preferential looking and change detection. To test this hypothesis, I conducted a series of 

simulations to capture the full range of behaviors across tasks and development. Across 

the two tasks, I simulated 70 means and 70 standard deviations (34 each in change 

detection, 36 each in preferential looking), for a grand total of 140 data points. In general, 

these fits of the simulations to the data were very good, typically capturing the data 

within one unit of measure (i.e., one trial, one second, one switch).  

These simulations provide strong support for the Dynamic Field Theory account 

of capacity in preferential looking and change detection, as well as the proposed 

developmental mechanism, the Spatial Precision Hypothesis. The simulations presented 

here are a particularly stringent test of the model—few models are tested across multiple 

tasks, multiple measures within tasks, or multiple points in development. Moreover, 

many models only simulate mean data points, but not standard deviations. Evaluating the 

DFT simulations compared to both means and standard deviations gives a better 

evaluation of the process by which the model generates behavior on each trial, not just 

averaged across trials and individuals. As such, the simulations presented here move 

beyond most other cognitive and developmental models in providing both specificity—on 

a trial-by-trial basis within each task—and generality—across tasks and development (see 

Simmering & Spencer, 2008, for discussion). 

One remaining challenge for this model, however, is to also capture individual 

differences within each age group; this type of variance is necessary to examine whether 

the model shows the type of correlations across tasks described in Chapter 3. One 

approach to this issue would be to introduce slight variations in the parameters that were 

scaled over development—it is possible that such variation would be sufficient to capture 

individual differences (i.e., cross-task correlations). Conceptually, such variations would 
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correspond to differential rates of development across individuals (and across 

parameters). For example, there may be differences in the development of excitatory 

versus inhibitory connections across individuals that would lead to differences in 

performance across tasks. If these differences were stable within individuals, they may 

lead to the correlations across tasks described in Chapter 3. Testing this possibility in the 

model was beyond the scope of the current thesis, but will be an important task for future 

modeling work. 
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Figure 24. Developmental scaling for parameters in the fields (A) and the nodes (B). 
Note that lines are color coded to correspond to the columns in Tables 5-7.  
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Figure 25.  Changes in peaks in WM as a function of developmental changes using the 
Spatial Precision Hypothesis.  
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Figure 26. Response distributions across set sizes for each age group in the change 
detection simulations (A-D), and the comparable data from Experiment 2 (E-H), 
reproduced from Figure 14.  

SS1 SS2 SS3 SS4 SS5

0

1

SS1 SS2 SS3 SS4 SS5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

po
rti

on
 R

es
po

ns
es

 1
A B

3 years 4 years

CR
H
M

C D

E F

G H

5 years

FA

P
ro

po
rti

on
 R

es
po

ns
es

 
P

ro
po

rti
on

 R
es

po
ns

es
 

P
ro

po
rti

on
 R

es
po

ns
es

 

AD

Set Size Set Size 
SS1 SS2 SS3 SS4 SS5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SS1 SS2 SS3 SS4 SS5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 years 4 years

5 years AD

n=3 

n=12

CR
H
M
FA

 



www.manaraa.com

129 

Figure 27. Responses adjusted as number of trials; correct rejections are shown on the 
right, hits are shown on the left. Error bars show standard error 
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Figure 28. A simulation of the DFT with the 3-year-old parameters performing a SS3 
false alarm trial in change detection. Panels and axes are as in Figure 5.  
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Figure 29. A simulation of the DFT with the 3-year-old parameters performing a SS3 
miss trial in change detection. Panels and axes are as in Figure 5.  
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Figure 30. Mean number of peaks in WM at the end of the delay in change detection, 
both averaged across trials (A) and separated by response types (B), for each parameter 
set. Error bars show standard error.  
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Figure 31. Simulation results for total looking time (A), change preference scores (B), 
and switches (C); data from Experiment 1 are reproduced from Figure 13 for comparison 
(D-F). Error bars show standard error.  
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Figure 32. Sample simulation of a SS2 preferential looking trials using the 3-year-old 
parameters. Activation of the fixation nodes (A) and in PF (B) and WM (C) are shown 
with time along the x-axis; along the y-axis is activation (A) and color (B-C). Vertical 
arrows indicate time slices through PF and WM (D-G); in these panels, color is along the 
x-axis and activation along the y-axis.  
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Figure 33. Sample simulation of a SS4 preferential looking trials using the 3-year-old 
parameters. Activation of the fixation nodes (A) and in PF (B) and WM (C) are shown 
with time along the x-axis; along the y-axis is activation (A) and color (B-C). Vertical 
arrows indicate time slices through PF and WM (D-G); in these panels, color is along the 
x-axis and activation along the y-axis.  
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Table 7 

Field Parameter Values 
   self- excitatory  inhibitory   
Layer τ h excitation projection(s) projection(s)  input noise 
PF(u) 80 -7 cuu = 3.10  cuv = 1.85 ctar = 20 qu = 0.1 
   σuu = 3  σuv = 26 σtar = 3 σq = 10 
     kuv = 0.05 
Inhib(v) 10 -12  cvu = 2   qv = 0.1 
    σvu = 7   σq = 10 
    cvw = 1.95 
    σvw = 5 
WM(w) 80 -4.5 cww = 3.15 cwu = 1.5 cwv = 0.6 ctar = 4  qw = 0.1 
   σww = 3 σwu = 5 σwv = 42 σtar = 3 σq = 10 
     kwv = 0.08 
PF(u)   cuu3 = 1.705  cuv3 = 0.6475 ctar3 = 8 qu = 0.125 
   cuu4 = 1.736  cuv4 = 0.851 ctar4 = 9 

   cuu5 = 1.85  cuv5 = 1.11 ctar5 = 10 
     kuv = 0.0375  σtar = 4.5 
Inhib(v)       qv = 0.125 
WM(w)   cww3 = 1.65375 cwv3 = 0.21 ctar3 = 2.4 qw = 0.125 
   cww4 = 1.764  cwv4 = 0.276 ctar4 = 2.25  
   cww5 = 2.0475 cwv5 = 0.36 ctar5 = 2  
     kwv = 0.06 σtar = 4.5 

Note. Scaled developmental parameters are shown below the dotted line; numbers at the end of 
each subscript indicate the corresponding age group when the value changed between 3 and 5 
years. Only parameters that were changed relative to the adult values are shown in this section; all 
other values were identical. 
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Table 8 

Response Node Parameter Values 
   self- excitatory  inhibitory   
Node τ h excitation projection(s) projection(s)  input noise 
Change (rc) 80 -5 ccc = 1.5 cuc = 1 cnc = 14  ccu = 1.005 qc = 0.075 
No Change (rn) 80 -5 cnn = 1.5 cwn = 1 ccn = 14 cnw = 0.14 qn = 0.075 
           ccc = 1.125  cnc = 10.5  
   cnn = 1.125  ccn = 10.5 cnw3 = 0.0756 
      cnw4 = 0.0938 
      cnw5 = 0.112 

Note. Scaled developmental parameters are shown below the dotted line; numbers at the end of 
each subscript indicate the corresponding age group. Only parameters that were changed over 
development are shown in this section; all other values were identical to the adult parameters. 
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Table 9 

Fixation Node Parameter Values 
   self- excitatory inhibitory   input 
Node τ   ha excitation projection(s) projection(s)  input noiseb 
Left(fl) 80 -5.5 cll = 2 cul = 1 crl = 20  clu = 1 qin = 20 
     cal = 20 cconst = 14.5 
      ctrans = 2 
Right(fr) 80 -5.5 crr = 2 cur = 1 clr = 20 cru = 1 qin = 20 
     car = 20 cconst = 14.5 
      ctrans = 2 
Away(fa) 80 -5.5 caa = 2  cra = 20  cconst = 2.5  qin = 20 
     cla = 20  

Left(fl)/     crl3 = 19 clu3
  = 1.25 qin3 = 25 

Right(fr)     crl4 = 19    clu4
  = 1.15 qin4 = 25 

          crl5 = 19 clu5
  = 1.05 qin5 = 25 

      cconst3
  = 8.40 

      cconst4
  = 9.24 

      cconst5
  = 9.715 

Note. All inhibitory projections (crl, cal, clr, car, cra, cla) were scaled the same over development; 
for simplicity, these values are listed only once. Scaled developmental parameters are shown 
below the dotted line; numbers at the end of each subscript indicate the corresponding age group. 
Only parameters that were changed over development are shown in this section; all other values 
were identical to the adult parameters. 

a The fixation node equations used dynamic resting levels; this value indicates the resting level in 
the absence of input. The resting level changed according to the following function: 

downfrestfhffh hhhhah ⋅Λ++−=⋅ )(&τ  (see Chapter 2 for further details). The slope (ah) 

was 0.9 and did not change over development. The low attractor value (hdown) was 15 for adults 
and changed as follows over development: hdown3 = 7.5, hdown4 = 8.575, hdown5 = 9.42. 

b Recall from Chapter 2 that the noise for the fixation system was white noise applied to cconst, 
rather than the activation of the nodes. This value was multiplied by a random value drawn from a 
normal distribution with mean zero and standard deviation one (i.e., using the “randn” function in 
Matlab, set to a random state to begin each simulation), and the result was multiplied by cconst. 
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Table 10 

Comparison of Results from Simulations and Experiment 2 

 Simulations Data  
 CR Rate  H Rate CR Rate  H Rate 
3 years    SS1 88.33 (11.79) 91.67 (10.78) 88.10 (18.98) 88.10 (13.76) 
 SS2 92.33 (10.76) 73.00 (14.24) 84.52 (17.86) 83.33 (16.01) 
 SS3 82.33 (14.83) 57.00 (20.51) 77.22 (26.93) 64.05 (26.67) 
4 years    SS1 91.67 (12.26) 97.67 (6.74) 96.43 (9.65) 95.24 (7.81) 
 SS2 94.67 (9.18) 89.67 (10.59) 92.86 (12.60) 91.67 (14.25) 
 SS3 83.00 (16.32) 71.33 (17.83) 80.95 (22.51) 70.48 (24.94) 
 SS4 77.33 (17.74) 61.67 (19.12) 61.11 (19.25) 66.67 (16.67) 
5 years    SS1 95.00 (9.07) 97.33 (6.17) 94.05 (8.29) 98.21 (4.82) 
 SS2 99.67 (2.36) 93.00 (10.15) 91.67 (10.84) 91.67 (18.20) 
 SS3 95.00 (8.42) 79.33 (15.99) 84.52 (16.62) 82.14 (15.28) 
 SS4 91.00 (9.65) 60.33 (15.02) 89.29 (15.48) 57.14 (25.91) 
 SS5 85.33 (12.88) 45.67 (21.51) 87.50 (16.09) 44.44 (30.43) 
Adult    SS1 98.67 (4.57) 90.67 (10.91) 98.81 (4.45) 97.62 (8.91) 
 SS2 100.00 (0.00) 94.00 (10.52) 100.00 (0.00) 100.00 (0.00) 
 SS3 100.00 (0.00) 94.00 (9.38) 98.81 (6.05) 100.00 (0.00) 
 SS4 100.00 (0.00) 91.33 (9.67) 97.62 (6.05) 100.00 (0.00) 
 SS5 98.33 (5.05) 77.33 (16.75) 96.43 (7.10) 89.29 (18.03) 

Note. CR = correct rejections; H = hits; SS = set size. Means are shown with standard deviations 
in parentheses.  
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Table 11 

Comparison of Total Looking Time from Simulations and Experiment 1 

 Simulations Data 
3 years SS2 13.77 (0.64) 14.67 (2.35) 
 SS4 13.34 (0.54) 14.23 (2.54) 
 SS6 14.75 (0.54) 14.67 (2.32) 
4 years  SS2 14.04 (0.45) 14.48 (2.22) 
 SS4 14.54 (0.50) 14.61 (2.50) 
 SS6 15.10 (0.53) 14.23 (2.21) 
5 years  SS2 13.92 (0.53) 14.69 (2.40) 
 SS4 14.55 (0.49) 14.71 (2.48) 
 SS6 14.80 (0.46) 14.63 (2.42) 
Adult  SS2 16.06 (0.51) 16.46 (1.24) 
 SS4 15.99 (0.41) 16.47 (1.11) 
 SS6 16.43 (0.53) 16.77 (1.11) 

Note. SS = set size. Means are shown with standard deviations in parentheses.  
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Table 12 

Comparison of Preference Scores from Simulations and Experiment 1 

  Simulations Data 
3 years SS2 0.55 (0.15) 0.59 (0.09) 
 SS4 0.52 (0.15) 0.55 (0.13) 
 SS6 0.54 (0.17) 0.54 (0.11) 
4 years  SS2 0.53 (0.12) 0.55 (0.10) 
 SS4 0.53 (0.14) 0.55 (0.13) 
 SS6 0.55 (0.14) 0.54 (0.11) 
5 years  SS2 0.55 (0.11) 0.57 (0.10) 
 SS4 0.55 (0.11) 0.54 (0.11) 
 SS6 0.55 (0.13) 0.54 (0.11) 
Adult  SS2 0.59 (0.09) 0.60 (0.11) 
 SS4 0.55 (0.06) 0.56 (0.09) 
 SS6 0.60 (0.09) 0.55 (0.09) 

Note. SS = set size. Means are shown with standard deviations in parentheses.  
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Table 13 

Comparison of Switches from Simulations and Experiment 1 

  Simulations Data 
3 years SS2 7.39 (2.44) 7.86 (3.18) 
 SS4 6.47 (5.75) 6.35 (2.94) 
 SS6 5.75 (1.98) 6.62 (2.78) 
4 years  SS2 8.58 (1.94) 9.13 (3.28) 
 SS4 7.65 (2.02) 6.98 (2.80) 
 SS6 6.33 (1.81) 7.08 (3.03) 
5 years  SS2 10.81 (2.32) 9.25 (3.68) 
 SS4 8.69 (2.43) 7.94 (3.64) 
 SS6 8.40 (2.33) 7.80 (3.73) 
Adult  SS2 13.84 (2.93) 14.20 (5.54) 
 SS4 14.25 (2.31) 14.00 (4.28) 
 SS6 11.79 (3.25) 13.00 (4.80) 

Note. SS = set size. Means are shown with standard deviations in parentheses.  
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CHAPTER 5 

GENERAL DISCUSSION 

The goal of this project was to use the Dynamic Field Theory to investigate the 

development of visual working memory capacity. Previously, preferential looking and 

change detection tasks had revealed inconsistent capacity estimates over development—

10-month-old infants showed an adult-like capacity of 3-4 items in preferential looking 

(Ross-Sheehy et al., 2003), whereas 5-year-old children showed a capacity of only 1.5 

items in change detection (Riggs et al., 2006). This discrepancy was previously thought 

to reflect differences across tasks, and both tasks were explained in the context of 

Information Processing theory. Nevertheless, this explanation left a number of questions 

unanswered. How does capacity relate to preferential looking behavior? What causes 

changes in capacity between 6 and 10 months in preferential looking, and between 5 and 

10 years in change detection? How is performance related across these two tasks? To 

address these questions, I considered both tasks within a different theoretical framework, 

the Dynamic Field Theory. 

In Chapter 2, I discussed how both tasks—change detection and preferential 

looking—have previously been captured using dynamic field models (Johnson, Spencer, 

& Schöner, in press; Perone & Spencer, 2008). I then used these models as a starting 

point to develop a unified model that could capture performance in both tasks. First I 

showed sample simulations demonstrating the different types of responses in change 

detection, and fit the general pattern of performance shown in adult studies of change 

detection (e.g., Vogel et al., 2001). Next, I tested this model in the preferential looking 

task by adding a fixation system used by Spencer and Perone (2008). Using this 

theoretical framework, I made three specific predictions for performance in these tasks 

over development: children and adults would show higher capacity than infants in 

preferential looking, that is, capacity estimates higher than the commonly accepted 
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capacity limit in adults of 3-4 items; capacity estimates would be higher in preferential 

looking than in change detection for the same individuals; and, even though these tasks 

were expected to produce different capacity estimates, there would be correlations in 

performance across tasks because both rely on the same underlying working memory 

system. 

These three predictions were verified in a series of experiments with 3- to 5-year-

old children and adults. Specifically, all age groups produced capacity estimates of at 

least 6 items in preferential looking, but in change detection, children produced estimates 

of only 2-3 items, and adults, about 4 items. Although I found the expected difference in 

capacity estimates when the same participants were tested in both tasks, I also found the 

predicted correlations in performance across tasks: capacity in change detection was 

predicted by the number of switches between displays on the SS4 trials in preferential 

looking. Recall that the number of switches in the DFT provides an index of how quickly 

and robustly the model can form a working memory of items in each display. More 

switches, therefore, should be related to an improved ability to maintain peaks in change 

detection, which simulations of the unified model showed was related to capacity 

estimates. These findings lend strong support to the DFT account of performance in these 

tasks and, more specifically, how performance in these tasks relates to the underlying 

capacity of VWM. 

In Chapter 4, quantitative simulations of the DFT captured a complex pattern of 

performance across all ages in both tasks. In change detection, the model produced the 

appropriate rates of each type of response—correct rejections, hits, misses, and false 

alarms—across set sizes and development. When tested in preferential looking, this same 

system was able to account for all three measures in the task—total looking, preference 

scores, and switches—across set sizes at each point in development. These simulations 

provide insight into the underlying WM representations that would lead to the 

correlations found in Chapter 3. In particular, the number of peaks that can be stably 
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maintained over the memory delay in change detection is the primary source of capacity 

limits in this task. It is this number (between 2 and 4 for children, and between 4 and 6 

for adults) that produces the change in switches observed over set sizes in preferential 

looking.  

The simulations in Chapter 4 also confirmed my fourth prediction, that the Spatial 

Precision Hypothesis could capture the developmental changes in these tasks. This 

provides added support for this developmental mechanism in the DFT (Schutte & 

Spencer, 2008; Schutte, Spencer, & Schöner, 2003; Simmering, Schutte, & Spencer, 

2008; Simmering & Spencer, 2008; Spencer, Simmering, Schutte, & Schöner, 2007). 

This hypothesis has successfully captured developmental changes in spatial working 

memory tasks (see Simmering et al., 2008; Spencer et al., 2007, for reviews), and has 

also been applied to infant development in preferential looking (Perone & Spencer, 2008; 

Perone, Spencer, & Schöner, 2007). The simulations presented here show how the SPH 

can be generalized to account for developmental changes in change detection and 

preferential looking between 3 and 5 years of age and into adulthood. 

In the sections that follow, I outline the implications of the unified model that I 

have developed and tested here. First, I will discuss how the DFT compares to other 

theoretical approaches to understanding VWM capacity. Building off of this discussion, I 

will focus specifically on developmental accounts within the working memory literature. 

Next, I will discuss various aspects of working memory development (as discussed in 

Chapter 1) that have not been incorporated in the DFT. Finally, I will consider the 

broader implications of this project for behavioral development. 

Contrasting the Dynamic Field Theory with Other 

Theoretical Approaches to Capacity 

Recall from Chapter 4 that capacity, as measured by these tasks, emerges in the 

DFT from an interaction between the limited number of WM peaks that can be stably 
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maintained at one time and the comparison and decision processes in the model. This 

account validates the construct of capacity in one sense—that there is a limited amount of 

information (i.e., activation) that can be held in memory at once. In another sense, 

however, it contradicts one traditional view of capacity—in the DFT, there is no “pure” 

form of capacity, that is, capacity does not exist separately from the information being 

maintained. Interestingly, much data has been generated illustrating this latter point (e.g., 

recall from Chapter 1 that word span tasks depend heavily on the details of the stimuli). 

However, general acceptance of an Information Processing account of capacity has made 

it difficult for researchers to abandon the notion that there is a pure form of memory that 

can be measured in isolation. 

In recent years, a debate has emerged within the adult VWM literature on the 

nature of capacity limits. In particular, Luck and colleagues (e.g., Luck & Vogel, 1997; 

Zhang & Luck, 2008) argue that capacity limits show properties of fixed-resolutions 

“slots”; that is, there is a specific number of items that may be “loaded” into working 

memory, regardless of what these items are. On the other hand, Alvarez and colleagues 

(e.g., Alvarez & Cavanagh, 2004) propose that capacity depends on a pool of resources 

that are allocated differentially depending on the details of the stimuli; complex items 

require more resources, and therefore fewer may be remembered at once, relative to 

simple items that require fewer resources. Both views have received empirical support, 

but because neither has been formalized in a process-based model, these results fail to 

falsify either perspective. For example, a conceptual theory can be modified such that 

slots may appear resource-like if one allows objects to be divided into smaller 

components that then become the units of representation. Conversely, resources may 

serve slot-like functions for certain types of stimuli (e.g., the simple colors and shapes 

that are often used in change detection tasks). Until these accounts have been formalized 

and embedded within processes that generate behavior, it is difficult to evaluate these 

explanations against one another. 
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The DFT can address this issue directly because it is a formal, process-based 

model: the nature of representations can be directly observed in simulations by analyzing 

the characteristics of the peaks in WM. In some ways, WM peaks are like slots—there is 

a discrete number of peaks that may be formed at one time, and they encode information 

in an all-or-none fashion (i.e., peaks either form or not, rather than encoding partial 

information; note that this does not imply that information in WM will be error-free, see 

Johnson, 2008). However, unlike most characterizations of slots, peaks do not have a 

fixed resolution (i.e., width). This is due to the continuous metric nature of the WM 

field—each peak being held in WM may be affected by other peaks being held at the 

same time. As an example, consider how long it takes a WM peak to form: peaks build 

more slowly and are weaker if two other peaks are building to either side. Moreover, the 

strength of a peak is generally higher when it is the only peak being maintained in WM. 

In this way, peaks resemble a pool of resources—memory for any given item will be 

affected by the number of other items, along with their complexity and similarity 

(Johnson, 2008; Johnson, Spencer, Luck, & Schöner, in press). Thus, the representations 

in the DFT—working memory peaks—provide a third alternative to slots and resources 

that can capture central aspects of both perspectives. 

The DFT also moves beyond previous approaches to capacity in that it grounds 

working memory in real-time processes that are rooted in neural principles. Some 

previous theories of capacity have proposed neurally-inspired accounts for the 

maintenance of items in working memory (e.g., Raffone & Wolters, 2001), but none has 

yet proposed neural processes for each component of the change detection task—

encoding, maintenance, comparison, and decision—that unfold in real time. How 

strongly tied to neural principles is DFT? Patterns of activation in neural fields have been 

directly linked to a population dynamics approach to cortical activation. For example, 

Bastian and colleagues (1998; 2003) compared time-dependent changes in neural 

activation in a dynamic field model of motor planning to single-unit neural activity in 
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motor cortex. To make this comparison, these researchers first mapped the responses of 

neurons in motor cortex to basic stimuli and created a continuous field by ordering the 

neurons based on their “preferred” stimulus values. This was followed by a behavioral 

pre-cueing task that probed predictions of a dynamic field theory of movement 

preparation (Erlhagen & Schöner, 2002). Note that this same theory has also been tested 

using ERP techniques (McDowell, Jeka, Schöner, & Hatfield, 2002). In both cases, the 

reported results suggested a robust relationship between predictions of a dynamic field 

model and neurophysiology. 

There is also strong evidence for the basic local excitation / lateral inhibition form 

of neural interaction used in dynamic field models (Durstewitz, Seamans, & Sejnowski, 

2000). Moreover, because cortical neurons never send both excitatory and inhibitory 

projections, the lateral inhibitory interaction must be mediated through an ensemble of 

interneurons. To capture this property, the DFT builds from a generic, two-layer 

formulation proposed by Amari and Arbib (1977) to realize this interaction, where a field 

of inhibitory interneurons receive input from an excitatory activation field and in turn 

inhibits that excitatory field. 

The DFT incorporates additional insights gained from studies of the layered 

structure of cortex. In particular, the three-layered architecture of the model was inspired 

by a cortical circuit model of the neocortex, derived from decades of research 

investigating the cytoarchitecture of the neocortex (Douglas & Martin, 1998). This basic 

circuit model consists of two interacting populations of excitatory pyramidal cells 

distributed across different layers of cortex, coupled to a single population of inhibitory 

neurons. Although I did not specify a precise relationship between layers in the DFT and 

particular cortical layers, the basic structure and patterns of connectivity within the model 

are consistent with established principles of cortical organization. 

Because the DFT is a real-time process model that is grounded in neural 

principles, it also provides a unique opportunity to explore development in this context. 
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In particular, the Spatial Precision Hypothesis provides a specific developmental 

mechanism—inspired by neural development—that can be incorporated into the real-time 

processes operating in the model. In the section that follows, I evaluate the simulations 

from Chapter 4 and the more general implications of the SPH for our understanding of 

the link between behavioral and brain development.  

The Spatial Precision Hypothesis: 

A Specific Mechanism for Developmental Change 

Previous research on developmental changes in working memory capacity has 

focused on when changes occur developmentally, mapping out the general patterns over 

development to see when children reach adult-like levels of performance (see Table 1). 

What has been missing from this literature thus far is an explanation of how these 

changes occur (see Siegler, 1996; and Spencer & Plumert, 2007, for similar critiques in 

other domains).  In an attempt to synthesize the developmental findings, some researchers 

have proposed changes that fall into two general categories: strategic, as in the use of 

rehearsal or chunking, and maturational, as in improvements in processing or resistance 

to interference (Dempster, 1981; Pickering, 2001). In the case of strategic factors, no 

specific proposals have been put forth regarding how or why the use of strategies changes 

over development. For maturational accounts, myelination has been suggested as a likely 

candidate for improving the efficiency of memory processing. However, the process by 

which myelination might produce changes in capacity has not been specified. Thus, a 

primary goal of formalizing two VWM tasks in a single process-based model was to 

move beyond these previous proposals to explore whether a specific developmental 

mechanism might account for changes in performance in working memory tasks over 

development. 

The simulations in Chapter 4 demonstrated that implementing the Spatial 

Precision Hypothesis in the Dynamic Field Theory effectively captures developmental 
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changes in both preferential looking and change detection performance. In particular, 

strengthening neural interactions over development produced developmental changes in 

capacity and generated the same behavioral patterns children showed in these tasks. 

Because the unified model built upon a modeling framework and developmental 

hypothesis that have been applied in other domains, this connects performance in these 

tasks to a host of other phenomena. 

Beginning with infancy, the SPH can account for developmental changes in the 

Piagetian A-not-B task. In particular, early in development, weak interactions do not 

support self-sustaining peaks in WM; this leads to perseverative responding in the context 

of the A-not-B task (see Simmering et al., 2008, for details). Later in development, as 

interactions strengthen, WM peaks sustain and can survive the short delay in the A-not-B 

task, consistent with the correct performance of 10- to 12-month-old infants. Beyond 

infancy, as interactions continue to strengthen, WM peaks become more robust and may 

sustain over longer delays and in the absence of continued visual input (i.e., without lids 

marking the hiding locations, see Schutte et al., 2003). 

Further strengthening of interactions moves working memory from a single-peak 

regime (in which only one peak may build and sustain at a time) to a multi-peak regime 

(in which multiple peaks may co-exist simultaneously). The simulations capturing 3-

year-olds’ performance in Chapter 4 exhibit an interaction function that has just 

transitioned beyond the single-peak regime: multiple peaks may be formed at one time, 

but only under supportive circumstances, and even in these cases the peaks are not 

particularly robust. For example, compared to simulations with “older” parameter sets, 

peaks in the 3-year-old simulations were prone to dying out during the delay. Only with 

further strengthening of neural interactions is the WM field able to reliably maintain 

multiple peaks throughout the change detection delay. 

Through this same period of development, strengthening interactions play a vital 

role in the interface between perceptual and memory processes. In spatial working 
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memory tasks, for example, strengthening neural interactions enable children to 

simultaneously remember a target location in working memory and remain anchored to 

perceived reference frames in the task space. Between the ages of 3 and 6 years, children 

show a complex pattern of change in reference frame biases in spatial recall. This pattern 

has been quantitatively modeled in the DFT using the SPH (Schutte & Spencer, 2008). In 

addition, these findings have been generalized to predict performance in a second task, 

position discrimination (Simmering & Spencer, 2008). 

The tasks presented here also reflect a richer and more robust interaction between 

perceptual and working memory processes over development. In particular, the interface 

between perceptual and working memory processes is at the center of the comparison 

mechanism in the DFT, that is, the comparison between items held in WM and items 

present in the display (represented in PF). This comparison mechanism produces the 

pattern of switching seen in preferential looking, as well as the capacity estimates in 

change detection. Thus, the comparison mechanism is an important contribution to the 

relationship across tasks revealed in the regression analysis. 

In summary, the SPH has proven to be a powerful mechanism for developmental 

change within the DFT across multiple tasks—from the Piagetian A-not-B task to change 

detection—and across a broad range of ages—from infancy into adulthood. Critically, the 

full range of these developmental changes across tasks can be realized by relatively 

simple changes in the strength of neural interactions over development. Given this, to 

what extent might the changes captured by the SPH reflect simple biological changes in 

the brain during early development?  

Various studies have shown that there are changes in multiple brain regions over 

development that might produce effects similar to the changes captured by the SPH. As 

an example, consider development of the prefrontal cortex (PFC). Many researchers have 

suggested that the PFC plays a central role in a variety of working memory tasks (e.g., 

Diamond & Goldman-Rakic, 1989; Luciana & Nelson, 2002; Nelson, 1995). For 
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example, one imaging studied demonstrated involvement of the PFC in both maintenance 

and manipulation of object-related information (i.e., when in a sequence a particular 

object was seen) in a working memory task (Crone, Wendelken, Donohue, van 

Leijenhorst, & Bunge, 2006). It is well-documented that the PFC continues to develop 

throughout childhood and adolescence (e.g., Huttenlocher, 1979, 1990, 1994; Jernigan, 

Trauner, Hesselink, & Tallal, 1991), suggesting that development of the PFC plays a 

likely role in developmental changes in working memory capacity.  

In addition, reductions in grey matter volume that reflect pruning of neural 

connections is still occurring in early childhood, and even into the post-adolescent years 

(Gogtay et al., 2004). Myelination is also still occurring in the frontal lobe into early 

childhood (Sampaio & Truwit, 2001). It is possible that these neurophysiological changes 

underlie changes in the spatial precision of neural interactions over development. For 

example, Edin and colleagues (Edin, Macoveanu, Olesen, Tegnér , & Klingberg, 2007) 

examined neurophysiological changes related to the development of working memory by 

implementing changes related to synaptic pruning, synaptic strengthening, and 

myelination in a neural network model of visuo-spatial working memory. These 

researchers then used the model to generate five developmental predictions about BOLD 

signals. They compared predictions the network made to BOLD signals measured with 

fMRI in 13-year-olds and adults, and found that neural interactions with “higher contrast” 

over development effectively captured developmental changes in BOLD signals. Higher 

contrast in their model consisted of strengthening connections both within and between 

regions which yielded more precise patterns of neural activation. Thus, the most effective 

developmental hypothesis in their simulation and fMRI study mirrored the changes 

captured by the implementation of the spatial precision hypothesis in Chapter 4. 

An example of a similar proposal is the representation acuity hypothesis proposed 

by Westermann and Mareschal (2004) to explain the development of visual object 

processing. According to the representation acuity hypothesis, the transition from 
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processing object parts to processing objects as wholes is the result of the narrowing of 

receptive fields in visual cortex. This narrowing of receptive fields is conceptually similar 

to the increase in the precision of neural interactions in the DFT. Schutte and Spencer 

(2008) showed that such narrowing can be an emergent result of strengthening excitatory 

and inhibitory interactions among layers of neurons in cortical fields. 

Although these explanations of what is changing at the level of the brain are 

exciting, this simply shifts the developmental question to another level of description, 

leaving the question open as to what drives the change in cortex. It is likely that these 

cortical changes are regulated by complex interactions among a host of factors from the 

genetic level to the level of large-scale interactions among populations of neurons in 

different cortical areas. It is also likely that these changes are massively experience-

dependent (see Johnson, 1999, for review). Given that the changes made to the model in 

Chapter 4 involved only changes in the strength of excitatory and inhibitory interactions 

among layers, it is easy to imagine that such changes could arise from a simple Hebbian 

process that strengthens cortical connections as a function of experience. For example, by 

incorporating Hebbian learning into the projections within and between layers in the 

unified model, these connections could be built up through long-term experience. Each 

time an item is perceived or remembered, the connections supporting those peaks (in PF 

and WM, respectively, with the corresponding connections to and from Inhib) would 

strengthen slightly. Given repeated experience with a full range of stimuli over days, 

weeks, months, and years, this suggests a mechanism by which the tuning of neural fields 

could emerge through experience. Future research will need to probe whether such a 

process can indeed give rise to the types of parameter changes implemented in Chapter 4. 

In summary, by incorporating the SPH in the DFT, I have proposed a specific 

developmental mechanism—the strengthening of neural interactions—that is embedded 

within a real-time process account of performance in both change detection and 

preferential looking. This makes substantial advances beyond previous accounts of 
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capacity and development in the VWM literature, as it is the first complete account of 

how capacity could develop in a neural system. By contrast, no IP account of these tasks 

has proposed an explanation for how or why capacity is increasing between 6 and 10 

months in preferential looking, or between 5 and 10 years in change detection.  

Implications for the Development of Verbal and Spatial 

Working Memory Capacity 

Although the experiments and simulations presented here have addressed the 

processes underlying the capacity of VWM over development, they do not yet speak to 

other tasks that test verbal or spatial working memory spans. There are a number of ways 

in which the tasks I have captured here—preferential looking and change detection—

differ from more traditional working memory tasks. Recall from Chapter 1 that the tasks 

used here differed from other working memory tasks in that they do not depend on speed 

of processing or rehearsal and there is no sequential component. Therefore, to generalize 

the DFT beyond the tasks used here, each of these differences must be considered. 

Within maturational explanations of capacity changes, increases in speed of 

processing are often proposed as a possible consequence of myelination. Speed of 

processing may be considered part of rehearsal (i.e., faster processing allows for faster 

rehearsal), or could be considered a separable component that influences how quickly 

items are encoded into or retrieved from memory. In Dempster’s (1981) review, the one 

potential developmental mechanism he concluded had the most empirical support was 

increased speed of item identification. As evidence for this increase in speed over 

development, he reviewed studies showing that recognition times decrease over 

development. Within the DFT, this notion of processing speed is already addressed by the 

SPH. In particular, stronger interactions allow peaks to build more quickly in both PF and 

WM. For example, using the parameters from the simulations in Chapter 4, I compared 

the time for a WM peak to pierce threshold at the developmental end points: it took about 
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225 time steps (~450 ms) to build peaks in WM with the 3-year-old parameters, and 

about 150 time steps (~300 ms) to build peaks in WM with the adult parameters. Thus, as 

neural interactions strengthen over development in the DFT, there is an emergent 

increase in speed of processing. 

A second change that underlies children’s improved performance in verbal 

working memory tasks over development is the emergence and subsequent improvement 

of rehearsal. Although there is no specific rehearsal mechanism in the DFT, it is 

important to consider how a strategy like rehearsal might be realized in a neural system. 

One proposal, in the domain of spatial working memory, is that attention serves as a 

mechanism of rehearsal (Awh, Jonides, & Reuter-Lorenz, 1998; Awh, Smith, & Jonides, 

1995). These authors propose that active maintenance of location information in a 

working memory task is mediated by focal shifts of spatial selective attention to the 

memorized locations. Behavioral testing of this hypothesis shows that memory 

performance is impaired by a secondary task only when it requires moving attention 

away from the location being remembered. In addition, identification of stimuli (i.e., 

colors or letters) was faster when the item was presented at a location being held in 

memory. These results led the authors to conclude that attention is “rehearsing” the 

location by maintaining focus at the remembered location. 

Johnson and Spencer (2008) tested an alternative to this hypothesis, specifically, 

that the recurrence that sustains peaks through the memory delay in the DFT could 

produce these behavioral effects. In a series of experiments and simulations, they showed 

that a dynamic neural field model can produce the same pattern reported by Awh and 

colleagues without a specific attentional or rehearsal process. As such, no separate 

mechanism for rehearsal is needed to capture these effects. The “rehearsal” processes is 

essentially captured in the neural dynamics that sustain peaks in cortical fields. 

Within the domain of verbal working memory, rehearsal is generally viewed as an 

active, iterative process by which information is continually articulated or “refreshed” 
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(Dempster, 1981). An important component of this strategy in verbal working memory is 

to maintain the sequence in which the stimuli were presented. Although the model 

presented here contains no mechanism for remembering items in sequence per se, it does 

remember items as they are presented in time. As such, if items were presented in 

sequence to the model described here, order effects can occur. For example, items 

presented early in a sequence are more likely to be kicked out of the self-sustaining state 

by the time the last item is presented. There is evidence for this type of sequential effect 

in change detection. Johnson and colleagues (2008; see also, Lin, 2005) used a sequential 

change detection task where three colored squares (at different locations) were presented 

sequentially to participants during encoding. After a short delay, a single item was 

presented at test and participants compared this item to the original item presented in that 

location to generate a same/different response. Participants showed a slight recency 

effect, that is, performance was higher for the item presented last in the encoding 

sequence. Thus, memory for the items was affected by the order of presentation, even 

though the sequence of the items was not explicitly tested in this task. 

Most verbal working memory tasks, however, require that items be recalled in the 

order they were presented. Without a specific memory for the sequence in which the 

items were presented, the unified model reported here would be unable to generate an 

ordered list in response. The DFT framework has been extended in this direction. In 

particular, Sandamirskaya and Schöner (2008) developed a system for learning and 

sequence generation with autonomous robots. For this study, the robot was taught a 

sequence of colors by presenting colored blocks, one at a time, while fields 

corresponding to the order in the sequence were boosted. Then, the robot was set in an 

arena where these colored blocks were randomly distributed, and its “task” was to visit 

the blocks in sequence. By coupling the “order” fields such that satisfaction of one step in 

the sequence (i.e., visiting the color associated with that step) activated the next field in 

the order, the robot was able to reproduce the sequence it had learned. Thus, sequential 
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learning is possible within the DFT framework. Interestingly, this model suggests that 

sequencing is a separable process from working memory, that is, the dynamics that 

govern sequence learning and production may differ from the dynamics of working 

memory studied here. As such, it is unclear how developmental changes in visual 

working memory capacity may interact with developmental changes in this sequencing 

process, but this is certainly an important topic for future study.  

Implications for Behavioral Development 

The experiments and simulations presented here also have implications for 

behavioral development more generally. One question that arises from these 

developmental findings is whether there might be adaptive consequence of a capacity-

limited system early in development. This question has been raised in other contexts 

(e.g., the “less-is-more” hypothesis in word learning; Newport, 1990), and can be 

informed by other applications of the DFT framework. For example, dynamic field 

models of word learning in robots (Faubel & Schoner, in press) and young children 

(Smith & Samuelson, 2005; Smith, Samuelson, & Spencer, 2008) can provide insight into 

how weaker interactions—and thus lower capacity—might be advantageous in a 

developing system. 

In the robotic implementation, the robot sees an object and hears a label, and must 

learn this association within 1-3 trials in order to use that information later to retrieve 

objects when cued with a label. This is accomplished through a two-dimensional 

association field, with labels along one dimension and objects along the other. To form an 

association, a single peak builds at the intersections of the two values (i.e., the object and 

the label); this peak leaves a trace in an associated long-term memory field. Then, when 

the label is cued later in the task, this value is activated as a “ridge” along the entire 

object dimension (i.e., with no specific object information). The dynamics of the field 

allow a peak to build where there is support from long-term memory—where the trace of 
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the previously-learned association was laid down—and the robot is able to select the 

correct objects. A key mechanism in this process is forming a single peak at the 

intersection of the two values in the association field, to lay down the corresponding 

long-term memory trace. If a peak builds in the incorrect location (say, at another object 

value for the same label), the robot will learn an erroneous association. 

What are the implications of this process for development? A balance is needed 

between forming associations quickly and avoiding spurious correlations. Learning the 

association between every two items that happen to be paired it time would clearly 

overwhelm the system. This is avoided in the robot partly by controlling the input (i.e., 

direct teaching by presenting single objects with single labels). But, of course, children 

do not learn about objects in such sparse situations. In the model, preventing associations 

between every label with every object means avoiding having too many peaks at once—

that is, having a low capacity. 

If the association field is tuned with weak interactions, like those presented here 

for young children, both the object and label inputs must be strong in order to form robust 

associations. This would be the case, for instance, in an ostensive naming context, where 

one object is highlighted visually and a label is presented repeatedly and/or in isolation. 

In these cases, the model may learn an object-label association quickly. In other cases, 

however, when multiple objects or labels are presented close together in time, it will take 

multiple repetitions to learn this association (see Horst & Samuelson, 2008, for evidence 

that this is true for children). This provides a concrete example of how weaker 

interactions, and thus lower capacity, may be adaptive early in development (see Spencer 

et al., 2007, for further discussion). 

An additional insight gained from incorporating these tasks into a single model is 

to connect research in infancy with tasks used later in development. Research by Rose 

and colleagues has explored how visual attention in infancy may be related to other 

cognitive measures over development, with specific interest in outcome differences 
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between pre- and full-term infants. In particular, Rose, Feldman, Jankowski, and Van 

Rossem (2005) showed that measures of attention, processing speed, and memory (as 

assessed by looking behavior) in infancy mediated the effects of prematurity on later 

cognitive abilities at 2 and 3 years (as measured by the Bayley Mental Development 

Indexes). Based on structural equation modeling, these authors concluded that there was a 

cascade effect, in which speed of processing influenced memory in infancy, which in turn 

influenced later cognitive abilities. Rose and Feldman (1997) showed correlations 

between processing speed in infancy and IQ at 11 years of age. Thus, looking behavior in 

infancy seems to provide an index of individual characteristics that persist over long 

periods of development. 

Although these findings by Rose and colleagues (Rose & Feldman, 1997; Rose et 

al., 2005) are compelling, they propose no specific mechanism or process linking looking 

behavior in infancy to these later cognitive abilities. The DFT, by contrast, provides a 

specific link between looking dynamics and memory formation—that is, specifying how 

and why looking and remembering are linked—in infancy (Perone & Spencer, 2008) as 

well as later development (as shown in my simulations of Experiment 1 data). Moreover, 

by combining this process into the unified model I presented here, I have shown how the 

same processes of memory formation contribute to other behaviors (i.e., change 

detection). This provides the first detailed, process-based account of how fixation 

dynamics relate to other behaviors later in development. 

These findings have implications for the study of atypical development as well. 

As shown in Chapter 3, the dynamics of fixation in preferential looking tasks provides an 

index of working memory processes without requiring the participant to follow directions 

or interact verbally with an experimenter. Thus, it should be possible to use this task with 

children and adults with a variety of developmental disorders (including autism and 

Down syndrome). This could provide a fast, efficient way to assess the development of 
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working memory abilities early in development when interventions to enhance memory 

formation might be more effective. 

Conclusions 

The experiments and simulations presented here provide compelling evidence that 

change detection and preferential looking both depend on the same underlying VWM 

system, but that capacity estimates differ across these tasks because of the different ways 

in which the tasks tap this system. Using a single, processed-based model, the Dynamic 

Field Theory, I have provided the first account for how behaviors in these two tasks arise 

from the same memory system, and why they produce different capacity estimates when 

the same individuals are tested in both tasks. Moreover, developmental changes in both 

tasks can be captured using an established developmental mechanism, the Spatial 

Precision Hypothesis. By strengthening neural interactions over development in the 

model, I was able to capture multiple details of behavior across both change detection 

and preferential looking tasks, offering the first specific proposal for how capacity limits 

could develop in a real-time neural system. Incorporating these tasks into the Dynamic 

Field Theory with the Spatial Precision Hypothesis also connects the current findings to a 

larger literature on developmental changes in memory from infancy to 6 years and into 

adulthood. These findings illustrate the benefits of formalizing concepts such as 

“capacity” within a specific computational model, as well as the importance of probing 

detailed hypotheses regarding the mechanisms of developmental change. 
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APPENDIX 

Two additional conditions were needed as controls for Experiments 2 and 3. In 

particular, Experiment 2 was the first use of an adapted procedure for testing change 

detection performance in young children. Because the task was adapted to be easier for 

young children to complete, it is possible that it also inflates performance relative to the 

standard version of the task. To test this possibility, I included a second group of 5-year-

old children who completed the standard task for comparison with the 5-year-olds who 

participated in the new version in Experiment 2. Note that the children in the control 

condition in Experiment 2 also participated in Experiment 1 (see Table 5) and were 

included in the cross task analyses described in Chapter 3. 

In addition, performance in Experiments 2 and 3 may have been affected by the 

fact that all children completed the preferential looking task (Experiment 1) before the 

change detection task. To ensure that change detection performance was not influenced 

by having participated in preferential looking first, I included a second group of 5-year-

olds who participated in only the Experiment 3 task. 

Experiment 2 Control: Color Change Detection—

Replicating  Riggs et al. (2006) 

Because the primary condition in Experiment 2 used a version of the change 

detection task that was modified for younger children (see Chapter 3), I also collected 

data from a group of 5-year-old children using the original Riggs et al. (2006) procedure. 

Comparing these children’s performance with the 5-year-olds who completed the 

modified version of the task provides validation that the two tasks are yielding similar 

performance. These children also completed the preferential looking task, and were 

included in the comparisons across tasks in Chapter 3. 
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Method 

Participants. Ten 5-year-olds (M age = 5 years, 0.38 months; SD = 0.53 months) 

from Experiment 1 also participated in a replication of the Riggs et al. (2006) standard 

version of the color change detection task. One additional 5-year-old participated but was 

excluded from analyses because he chose to end early. All participants had normal or 

corrected-to-normal vision and no history of color-blindness. 

Apparatus. The same computer was used as described in Experiment 2. The 

square stimuli were also identical, with three exceptions. First, instead of presenting the 

items within a gray “card” frame on a black background that alternated between left and 

right positions across trials, the colors were simply presented on a gray background. 

Second, the location of the squares was determined randomly on each trial. Third, rather 

than using flashcards to explain the task, the experimenter showed pictures of a SS3 trial 

on a single sheet of paper through a “window” cut into a piece of black cardstock. 

Procedure. The procedure was identical to that describe for 5-year-olds in 

Experiment 2, except that the task was not described as card-matching. Rather, children 

were simply told they were to remember the colors and tell the experimenter if one 

changed between the first display and the second. 

Results and Discussion 

The same three measures of performance were computed for each set size: 

accuracy (A’), response criterion bias (β), and capacity; means for each measure are 

shown in Figure A1 with the data from Experiment 2 for comparison. As this figure 

shows, results were fairly similar across these conditions, with slightly better 

performance in the modified version of the task used in Experiment 2. Separate ANOVAs 

were carried out on each measure of performance, with Condition (card version, standard 

version) as a between-subjects factor. Because all 5-year-olds completed at least SS4, 

analyses include performance across these four set sizes. Only the comparison on bias 
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scores revealed a significant effect of Condition, (F1, 22 = 6.13, p < .01); bias was higher 

in the standard version, suggesting more of a change bias in this version of the task. In 

each other case, there was no significant effect of Condition (ps > 0.2). Note that, 

although capacity estimates in this task did not differ across conditions (mean maximum 

estimate of 2.82 in this condition, 2.90 in Experiment 2), both were higher than those 

reported for 5-year-olds by Riggs et al. (2006). The reasons for this difference are 

unclear; it is possible that the method for calculating capacity across set sizes differed. 

For example, averaging across set sizes would result in lower estimates than the 

maximum method used in Experiment 2.17 

Experiment 3 Control: Shape Change Detection without 

Preferential Looking 

An additional group of 5-year-olds participated in the shape change detection task 

without participating in the preferential looking task first. It is possible that capacity 

estimates were lower in change detection because children were fatigued from having 

completed the preferential looking task. One result that suggests this is not the case, 

however, is the higher capacity estimates in this task relative to those reported in the 

literature (i.e., 1.5 items for 5-year-olds; Riggs et al., 2006). Alternatively, it is possible 

that completing the preferential looking task first actually improved performance in 

change detection (although there are no clear indications as to how such an improvement 

might arise). In either case, comparing children’s performance to a condition in which 

they did not participate in preferential looking should rule out these possibilities. 

                                                 
17 The section on capacity in the Riggs et al. (2006) paper does not describe how they arrived at a 
single estimate for each age group (e.g., average versus maximum); when contacted for 
clarification, the first author was unsure what method was used (personal communication, June 
2007). 
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Method 

Participants. Fourteen 5-year-olds (M age = 5 years, 1.05 months; SD = 1.47 

months) participated in this condition. All children had normal or corrected-to-normal 

vision. 

Apparatus and Procedure. The apparatus and procedure were identical to that 

described in Experiment 3, with two exceptions. First, children did not participate in the 

preferential looking task. Second, blocks were presented in the same order for all 

children: SS2 – SS1 – SS3 – SS4 – SS5. 

Results and Discussion 

The same three measures of performance were computed for each set size: 

accuracy (A’), response criterion bias (β), and capacity; means for each measure are 

shown in Figure A2 with the data from Experiment 3 for comparison. As this figure 

shows, performance was nearly identical across conditions. Separate ANOVAs were 

carried out on each measure of performance, with Task Order (preferential looking first, 

change detection first) as a between-subjects factor. Note that, because all 5-year-olds 

completed at least SS4, analyses include performance across these four set sizes. In each 

case, there were no significant effects of Condition (all ps > 0.5). Additionally, mean 

maximum capacity estimates were similar across conditions: 2.34 in the control 

condition, 2.29 in Experiment 3. These results suggest that completing the preferential 

looking task before the change detection task did not influence performance. 
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Figure A1. Results from the control condition for Experiment 2: (A) accuracy, (B) 
response criterion bias, and (C) capacity. Error bars show standard error.  
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Figure A2. Results from the control condition for Experiment 3: (A) accuracy, (B) 
response criterion bias, and (C) capacity. Error bars show standard error.  
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